Publications

Browse through a selection of publications using Visiopharm’s software.
Select products or use the text search to filter results.

Date Title Author Journal
2018 Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial

Phenoplex, Publicly Sharable

Background: CD73 is an ecto-enzyme that promotes tumor immune escape through the production of immunosuppressive extracellular adenosine in the tumor microenvironment. Several CD73 inhibitors and adenosine receptor antagonists are being evaluated in phase I clinical trials. Patients and methods: Full-face sections from formalin-fixed paraffin-embedded primary breast tumors from 122 samples of triple-negative breast cancer (TNBC) from the BIG 02-98 adjuvant phase III clinical trial were included in our analysis. Using multiplex immunofluorescence and image analysis, we assessed CD73 protein expression on tumor cells, tumor-infiltrating leukocytes and stromal cells. We investigated the associations between CD73 protein expression with disease-free survival (DFS), overall survival (OS) and the extent of tumor immune infiltration. Results: Our results demonstrated that high levels of CD73 expression on epithelial tumor cells were significantly associated with reduced DFS, OS and negatively correlated with tumor immune infiltration (Spearman's R=-0.50, P < 0.0001). Patients with high levels of CD73 and low levels of tumor-infiltrating leukocytes had the worse clinical outcome. Conclusions: Taken together, our study provides further support that CD73 expression is associated with a poor prognosis and reduced anti-tumor immunity in human TNBC and that targeting CD73 could be a promising strategy to reprogram the tumor microenvironment in this BC subtype.

L. Buisseret, S. Pommey, B. Allard, S. Garaud, M. Bergeron, I. Cousineau, L. Ameye, Y. Bareche, M. Paesmans, J. P.A. Crown, A. Di Leo, S. Loi, M. Piccart-Gebhart, K. Willard-Gallo, C. Sotiriou, John Stagg

L. Buisseret, S. Pommey, B. Allard... et al. Annals of Oncology
2019 The immune system in sporadic inclusion body myositis patients is not compromised by blood-flow restricted exercise training

Phenoplex, Publicly Sharable

Background: Sporadic inclusion body myositis (sIBM) is clinically characterised by progressive proximal and distal muscle weakness and impaired physical function while skeletal muscle tissue displays abnormal cellular infiltration of T cells, macrophages, and dendritic cells. Only limited knowledge exists about the effects of low-load blood flow restriction exercise in sIBM patients, and its effect on the immunological responses at the myocellular level remains unknown. The present study is the first to investigate the longitudinal effects of low-load blood flow restriction exercise on innate and adaptive immune markers in skeletal muscle from sIBM patients. Methods: Twenty-two biopsy-validated sIBM patients were randomised into either 12 weeks of low-load blood flow restriction exercise (BFRE) or no exercise (CON). Five patients from the control group completed 12 weeks of BFRE immediately following participation in the 12-week control period leading to an intervention group of 16 patients. Muscle biopsies were obtained from either the m. tibialis anterior or the m. vastus lateralis for evaluation of CD3-, CD8-, CD68-, CD206-, CD244- A nd FOXP3-positive cells by three-colour immunofluorescence microscopy and Visiopharm-based image analysis quantification. A linear mixed model was used for the statistical analysis. Results: Myocellular infiltration of CD3-/CD8+ expressing natural killer cells increased following BFRE (P < 0.05) with no changes in CON. No changes were observed for CD3+/CD8- or CD3+/CD8+ T cells in BFRE or CON. CD3+/CD244+ T cells decreased in CON, while no changes were observed in BFRE. Pronounced infiltration of M1 pro-inflammatory (CD68+/CD206-) and M2 anti-inflammatory (CD68+/CD206+) macrophages were observed at baseline; however, no longitudinal changes in macrophage content were observed for both groups. Conclusions: Low-load blood flow restriction exercise elicited an upregulation in CD3-/CD8+ expressing natural killer cell content, which suggests that 12 weeks of BFRE training evokes an amplified immune response in sIBM muscle. However, the observation of no changes in macrophage or T cell infiltration in the BFRE-trained patients indicates that patients with sIBM may engage in this type of exercise with no risk of intensified inflammatory activity.

Kasper Yde Jensen, Mikkel Jacobsen, Henrik Daa Schrøder, Per Aagaard, Jakob Lindberg Nielsen, Anders Nørkær Jørgensen, Eleanor Boyle, Rune Dueholm Bech, Sofie Rosmark, Louise Pyndt Diederichsen, Ulrik Frandsen

Kasper Yde Jensen, Mikkel Jacobsen, Henrik Daa Schrøder... et al. Arthritis Research and Therapy
2019 Immune-enrichment of non-small cell lung cancer baseline biopsies for multiplex profiling define prognostic immune checkpoint combinations for patient stratification

Phenoplex, Publicly Sharable, TMA

Background Permanence of front-line management of lung cancer by immunotherapies requires predictive companion diagnostics identifying immune-checkpoints at baseline, challenged by the size and heterogeneity of biopsy specimens. Methods An innovative, tumor heterogeneity reducing, immune-enriched tissue microarray was constructed from baseline biopsies, and multiplex immunofluorescence was used to profile 25 immune-checkpoints and immune-antigens. Results Multiple immune-checkpoints were ranked, correlated with antigen presenting and cytotoxic effector lymphocyte activity, and were reduced with advancing disease. Immune-checkpoint combinations on TILs were associated with a marked survival advantage. Conserved combinations validated on more than 11,000 lung, breast, gastric and ovarian cancer patients demonstrate the feasibility of pan-cancer companion diagnostics. Conclusions In this hypothesis-generating study, deepening our understanding of immune-checkpoint biology, comprehensive protein-protein interaction and pathway mapping revealed that redundant immune-checkpoint interactors associate with positive outcomes, providing new avenues for the deciphering of molecular mechanisms behind effects of immunotherapeutic agents targeting immune-checkpoints analyzed. Derek Bergeron and Amira Ben Amor contributed equally to this work. * Abbreviations: ACT : Adoptive cell transfer ADC : Adenocarcinoma APC : Antigen presenting cells CD3-ICP : ICP expressed on CD3+ TIL CDx : Companion diagnostics CTLA-4 : Cytotoxic T lymphocyte-associated antigen 4 EGA : European Genome-phenome Archive GEO : Gene Expression Omnibus GZMB : Granzyme B HEV : High endothelial venules HLA-DR : Human leukocyte antigen-DR ICP : Immune checkpoint IF : Immunofluorescence IFN-γ : Interferon-gamma IHC : Immunohistochemistry IIC : Infiltrating immune cells IID : Integrated Interaction Database IM : Immunoscore K-M : Kaplan-Meier survival analysis LUAD : Lung adenocarcinoma LUSC : Lung squamous cell carcinoma MFI : Mean fluorescence intensity MP-IF : Multiplex immunofluorescence NAViGaTOR : Network Analysis, Visualization and Graphing, TORonto NK cells : Natural killer cells NSCLC : Non-small cell lung carcinoma OS : Overall survival pathDIP : Pathway Data Integration Portal PD-1 : Programmed death-1 PD-L1 and PD-L2 : Programmed death-1 ligands 1 and 2 PNAd : Peripheral node addressin SCC : Squamous-cell carcinoma TAM : Tumor-associated macrophages TCGA : The Cancer Genome Atlas TCR : T cell receptor TIL : Tumor infiltrating lymphocytes TMA : Tissue microarray TNM : Tumor, node, metastases

Anne Monette, Derek Bergeron, Amira Ben Amor, Liliane Meunier, Christine Caron, Anne Marie Mes-Masson, Nidhameddine Kchir, Kamel Hamzaoui, Igor Jurisica, Réjean Lapointe

Anne Monette, Derek Bergeron, Amira Ben Amor... et al. Journal for ImmunoTherapy of Cancer
2020 PUMA and NOXA Expression in Tumor-Associated Benign Prostatic Epithelial Cells Are Predictive of Prostate Cancer Biochemical Recurrence

Phenoplex, Publicly Sharable, TMA

Background: Given that treatment decisions in prostate cancer (PC) are often based on risk, there remains a need to find clinically relevant prognostic biomarkers to stratify PC patients. We evaluated PUMA and NOXA expression in benign and tumor regions of the prostate using immunofluorescence techniques and determined their prognostic significance in PC. Methods: PUMA and NOXA expression levels were quantified on six tissue microarrays (TMAs) generated from radical prostatectomy samples (n = 285). TMAs were constructed using two cores of benign tissue and two cores of tumor tissue from each patient. Association between biomarker expression and biochemical recurrence (BCR) at 3 years was established using log-rank (LR) and multivariate Cox regression analyses. Results: Kaplan–Meier analysis showed a significant association between BCR and extreme levels (low or high) of PUMA expression in benign epithelial cells (LR = 8.831, p = 0.003). Further analysis revealed a significant association between high NOXA expression in benign epithelial cells and BCR (LR = 14.854, p < 0.001). The combination of extreme PUMA and high NOXA expression identified patients with the highest risk of BCR (LR = 16.778, p < 0.001) in Kaplan–Meier and in a multivariate Cox regression analyses (HR: 2.935 (1.645–5.236), p < 0.001). Conclusions: The combination of PUMA and NOXA protein expression in benign epithelial cells was predictive of recurrence following radical prostatectomy and was independent of PSA at diagnosis, Gleason score and pathologic stage.

Sylvie Clairefond, Benjamin Péant, Véronique Ouellet, Véronique Barrès, Zhe Tian, Dominique Trudel, Pierre I. Karakiewicz, Anne Marie Mes-Masson, Fred Saad

Sylvie Clairefond, Benjamin Péant, Véronique Ouellet... et al. Cancers
2020 Visualization, quantification, and mapping of immune cell populations in the tumor microenvironment

Oncotopix Discovery, Phenoplex, Publicly Sharable, Tissuealign, nice

The immune landscape of the tumor microenvironment (TME) is a determining factor in cancer progression and response to therapy. Specifically, the density and the location of immune cells in the TME have important diagnostic and prognostic values. Multiomic profiling of the TME has exponentially increased our understanding of the numerous cellular and molecular networks regulating tumor initiation and progression. However, these techniques do not provide information about the spatial organization of cells or cell-cell interactions. Affordable, accessible, and easy to execute multiplexing techniques that allow spatial resolution of immune cells in tissue sections are needed to complement single cell-based high-throughput technologies. Here, we describe a strategy that integrates serial imaging, sequential labeling, and image alignment to generate virtual multiparameter slides of whole tissue sections. Virtual slides are subsequently analyzed in an automated fashion using user-defined protocols that enable identification, quantification, and mapping of cell populations of interest. The image analysis is done, in this case using the analysis modules Tissuealign, Author, and HISTOmap. We present an example where we applied this strategy successfully to one clinical specimen, maximizing the information that can be obtained from limited tissue samples and providing an unbiased view of the TME in the entire tissue section.

Manuel Flores Molina, Thomas Fabre, Aurélie Cleret-Buhot, Geneviève Soucy, Liliane Meunier, Mohamed N. Abdelnabi, Nicolas Belforte, Simon Turcotte, Naglaa H. Shoukry

Manuel Flores Molina, Thomas Fabre, Aurélie Cleret-Buhot... et al. Journal of Visualized Experiments
2020 Multispectral Imaging Enables Characterization of Intrahepatic Macrophages in Patients With Chronic Liver Disease

Phenoplex, Publicly Sharable

Intrahepatic macrophages influence the composition of the microenvironment, host immune response to liver injury, and development of fibrosis. Compared with stellate cells, the role of macrophages in the development of fibrosis remains unclear. Multispectral imaging allows detection of multiple markers in situ in human formalin-fixed, paraffin-embedded tissue. This cutting-edge technology is ideal for analyzing human liver tissues, as it allows spectral unmixing of fluorophore signals, subtraction of auto-fluorescence, and preservation of hepatic architecture. We analyzed five different antibodies commonly observed on macrophage populations (CD68, MAC387, CD163, CD14, and CD16). After optimization of the monoplex stains and development of a Spectral Library, we combined all of the antibodies into a multiplex protocol and used them to stain biopsies collected from representative patients with chronic liver diseases, including chronic hepatitis C, nonalcoholic steatohepatitis, and autoimmune hepatitis. Various imaging modalities were tested, including cell phenotyping, tissue segmentation, t-distributed stochastic neighbor embedding plots, and phenotype matrices that facilitated comparison and visualization of the identified macrophage and other cellular profiles. We then tested the feasibility of this platform to analyze numerous regions of interest from liver biopsies with multiple patients per group, using batch analysis algorithms. Five populations showed significant differences between patients positive for hepatitis C virus with advanced fibrosis when compared with controls. Three of these were significantly increased in patients with advanced fibrosis when compared to controls, and these included CD163+CD16+, CD68+, and CD68+MAC387+. Conclusion: Spectral imaging microscopy is a powerful tool that enables in situ analysis of macrophages and other cells in human liver biopsies and may lead to more personalized therapeutic approaches in the future. chronic liver diseases HCV, NASH, and AIH

Omar A. Saldarriaga, Benjamin Freiberg, Santhoshi Krishnan, Arvind Rao, Jared Burks, Adam L. Booth, Bradley Dye, Netanya Utay, Monique Ferguson, Abdellah Akil, Minkyung Yi, Laura Beretta, Heather L. Stevenson

Omar A. Saldarriaga, Benjamin Freiberg, Santhoshi Krishnan... et al. Hepatology Communications
2021 SerpinB13 antibodies promote cell development and resistance to type 1 diabetes

Phenoplex, Publicly Sharable

Pancreatic endocrine cell development is dependent on the rescue of the neurogenin3 (Ngn3) transcription factor from repression by Notch. The signals that prevent Notch signaling, thereby allowing the formation of pancreatic endocrine cells, remain unclear. We show that inhibiting serpinB13, a cathepsin L (CatL) protease inhibitor expressed in the pancreatic epithelium, caused in vitro and in vivo cleavage of the extracellular domain of Notch1. This was followed by a twofold increase in the Ngn3+ progenitor cell population and enhanced conversion of these cells to express insulin. Conversely, both recombinant serpinB13 protein and CatL deficiency down-regulated pancreatic Ngn3+ cell output. Mouse embryonic exposure to inhibitory anti-serpinB13 antibody resulted in increased islet cell mass and improved outcomes in streptozotocin-induced diabetes at 8 weeks of age. Moreover, anti-serpinB13 autoantibodies stimulated Ngn3+ endocrine progenitor formation in the pancreas and were associated with delayed progression to type 1 diabetes (T1D) in children. These data demonstrate long-Term impact of serpinB13 activity on islet biology and suggest that promoting protease activity by blocking this serpin may have prophylactic potential in T1D.

Yury Kryvalap, Matthew L. Jiang, Nadzeya Kryvalap, Cole Hendrickson, Jan Czyzyk

Yury Kryvalap, Matthew L. Jiang, Nadzeya Kryvalap... et al. Science Translational Medicine
2021 Increased angiotensin-converting enzyme 2 and loss of alveolar type II cells in COVID-19–related acute respiratory distress syndrome

Phenoplex, Publicly Sharable

Rationale: ACE2 (angiotensin-converting enzyme 2), the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is expressed in type 2 alveolar epithelial cells (AT2) that may play key roles in postinjury repair. An imbalance between ACE2 and ACE has also been hypothesized to contribute to lung injury. Objectives: To characterize the expression and distribution of ACE2 and ACE and to compare AT2 with endothelial cell expression in coronavirus disease (COVID-19)–related or –unrelated acute respiratory distress syndrome (ARDS) and controls. Methods: Lung tissue stainings (using multiplex immunofluorescence) and serum concentrations of ACEs were determined retrospectively in two different cohorts of patients. AT2 and endothelial cells were stained in lung tissue for ProSPC (pro-surfactant protein C) and CD31, respectively. Measurements and Main Results: Pulmonary ACE2 expression was increased in patients with COVID-19–related and –unrelated ARDS (0.06% of tissue area and 0.12% vs. 0.006% for control subjects; P = 0.013 and P, 0.0001, respectively). ACE2 was upregulated in endothelial cells (0.32% and 0.53% vs. 0.01%; P = 0.009 and P, 0.0001) but not in AT2 cells (0.13% and 0.08% vs. 0.03%; P = 0.94 and P = 0.44). Pulmonary expression of ACE was decreased in both COVID-19–related and –unrelated ARDS (P = 0.057 and P = 0.032). Similar increases in ACE2 and decreases in ACE were observed in sera of COVID-19 (P = 0.0054 and P, 0.0001) and non–COVID-19 ARDS (P, 0.0001 and P = 0.016). In addition, AT2 cells were decreased in patients with COVID-19–related ARDS compared with COVID-19–unrelated ARDS (1.395% vs. 2.94%, P = 0.0033). Conclusions: ACE2 is upregulated in lung tissue and serum of both COVID-19–related and –unrelated ARDS, whereas a loss of AT2 cells is selectively observed in COVID-19–related ARDS.

Ludovic Gerard, Marylene Lecocq, Caroline Bouzin, Delphine Hoton, Gregory Schmit, Joao Pinto Pereira, Virginie Montiel, Thomas Plante-Bordeneuve, Pierre François Laterre, Charles Pilette

Ludovic Gerard, Marylene Lecocq, Caroline Bouzin... et al. American Journal of Respiratory and Critical Care Medicine
2021 Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer

Phenoplex, Publicly Sharable, Vectra

Pancreatic ductal adenocarcinoma (PDAC) is therapeutically recalcitrant and metastatic. Partial epithelial to mesenchymal transition (EMT) is associated with metastasis; however, a causal connection needs further unraveling. Here, we use single-cell RNA sequencing and genetic mouse models to identify the functional roles of partial EMT and epithelial stabilization in PDAC growth and metastasis. A global EMT expression signature identifies ∼50 cancer cell clusters spanning the epithelial-mesenchymal continuum in both human and murine PDACs. The combined genetic suppression of Snail and Twist results in PDAC epithelial stabilization and increased liver metastasis. Genetic deletion of Zeb1 in PDAC cells also leads to liver metastasis associated with cancer cell epithelial stabilization. We demonstrate that epithelial stabilization leads to the enhanced collective migration of cancer cells and modulation of the immune microenvironment, which likely contribute to efficient liver colonization. Our study provides insights into the diverse mechanisms of metastasis in pancreatic cancer and potential therapeutic targets.

Julienne L. Carstens, Sujuan Yang, Pedro Correa de Sampaio, Xiaofeng Zheng, Souptik Barua, Kathleen M. McAndrews, Arvind Rao, Jared K. Burks, Andrew D. Rhim, Raghu Kalluri

Julienne L. Carstens, Sujuan Yang, Pedro Correa de Sampaio... et al. Cell Reports
2021 Immunological tumor heterogeneity and diagnostic profiling for advanced and immune therapies

Phenoplex, Publicly Sharable, Ultivue

Immunotherapies have changed the way how we treat cancer at all stages. The understanding of the immune system in individual tumor specimens guides the selection of immune-modulating agents such as immune checkpoint inhibitors alone or in combination with other therapeutic agents that target, modulate or unleash the patient's immune system. Despite the similar histopathological diagnosis, each tumor is unique at its primary site and site of metastasis, also depending on previous treatment regimens or genetic alterations, such as chromosomal instability or acquired mutations. The clinically well-established use of PD-1/PD-L1 inhibitors already requires the assessment of its target molecules in different cells (viable tumor cells alone or in combination with immune cells or immune cells alone) with different thresholds in various indications. Anyhow, checkpoint inhibitors show the best overall response rate when immune effec-tor cells like tumor-infiltrating lymphocytes are in close spatial proximity without being suppressed by other humoral or cellular regulatory mechanisms. Therefore, immune cell-rich tumors ("hot tumors") are usually quite reactive to immune-modulating agents, whereas other immune-depleted or immune-excluded tumor areas are less responsive and require alternative treatment regimens such as modified immune effectors cells or immune-stimulating agents, for example, oncolytic viruses. Here, we summarize the relevance to understand the entire tumor heterogeneity and its environment, the contextual relationship and spatial quantification of all immune and tumor cells along with the genetic background of the individual cancer through the application of multiplex in-situ technologies and the application of machine learning tools. K E Y W O R D S cell therapy, immunotherapy 1 | BACKGROUND Immunology discoveries and advancements come in waves. More than 100 years ago, different immune cells and their separate role in infectious and neoplastic diseases became obvious and some improvement in light microscopy contributed to the development of cancer immunology as a separate subject. With the advancement of analytical methods like immunohistochemistry (IHC), molecular tools, and computational solutions, immunotherapies make a greater impact in our clinical practice. 1 Today, we have advanced diagnostic tools at hand such as digital imaging for the objective and reproducible assessment of multiple markers at a time or on a single tissue slide precisely quantifying the absolute numbers of functionally distinct immune cells as well as their spatial distribution and contextual

Ralf Huss, Christoph Schmid, Mael Manesse, Jeppe Thagaard, Bruno Maerkl

Ralf Huss, Christoph Schmid, Mael Manesse... et al. Advances in Cell and Gene Therapy
2021 Immune microenvironment characterisation and dynamics during anti-HER2-based neoadjuvant treatment in HER2-positive breast cancer

Oncotopix Discovery, Phenoplex, Publicly Sharable, Tissuealign

Despite their recognised role in HER2-positive (HER2+) breast cancer (BC), the composition, localisation and functional orientation of immune cells within tumour microenvironment, as well as its dynamics during anti-HER2 treatment, is largely unknown. We here investigate changes in tumour-immune contexture, as assessed by stromal tumour-infiltrating lymphocytes (sTILs) and by multiplexed spatial cellular phenotyping, during treatment with lapatinib-trastuzumab in HER2+ BC patients (PAMELA trial). Moreover, we evaluate the relationship of tumour-immune contexture with hormone receptor status, intrinsic subtype and immune-related gene expression. sTIL levels increase after 2 weeks of HER2 blockade in HR-negative disease and HER2-enriched subtype. This is linked to a concomitant increase in cell density of all four immune subpopulations (CD3+, CD4+, CD8+, Foxp3+). Moreover, immune contexture analysis showed that immune cells spatially interacting with tumour cells have the strongest association with response to anti-HER2 treatment. Subsequently, sTILs consistently decrease at the surgery in patients achieving pathologic complete response, whereas most residual tumours at surgery remain inflamed, possibly reflecting a progressive loss of function of T cells. Understanding the features of the resulting tumour immunosuppressive microenvironment has crucial implications for the design of new strategies to de-escalate or escalate systemic therapy in early-stage HER2+ BC.

G. Griguolo, G. Serna, T. Pascual, R. Fasani, X. Guardia, N. Chic, L. Paré, S. Pernas, M. Muñoz, M. Oliveira, M. Vidal, A. Llombart-Cussac, J. Cortés, P. Galván, B. Bermejo, N. Martínez, R. López, S. Morales, I. Garau, L. Manso, J. Alarcón, E. Martínez, P. Villagrasa, A. Prat, P. Nuciforo

G. Griguolo, G. Serna, T. Pascual... et al. Precision Oncology
2021 Impaired Dendritic Cell Homing in COVID-19

Phenoplex, Publicly Sharable

The high mortality of COVID-19 is mostly attributed to acute respiratory distress syndrome (ARDS), whose histopathological correlate is diffuse alveolar damage (DAD). Furthermore, severe COVID-19 is often accompanied by a cytokine storm and a disrupted response of the adaptive immune system. Studies aiming to depict this dysregulation have mostly investigated the peripheral cell count as well as the functionality of immune cells. We investigated the impact of SARS-CoV-2 on antigen-presenting cells using multiplexed immunofluorescence. Similar to MERS-CoV and SARS-CoV, SARS-CoV-2 appears to be impairing the maturation of dendritic cells (DCs). DC maturation involves a switch in surface antigen expression, which enables the cells' homing to lymph nodes and the subsequent activation of T-cells. As quantitative descriptions of the local inflammatory infiltrate are still scarce, we compared the cell population of professional antigen-presenting cells (APC) in the lungs of COVID-19 autopsy cases in different stages of DAD. We found an increased count of myeloid dendritic cells (mDCs) in later stages. Interestingly, mDCs also showed no significant upregulation of maturation markers in DAD-specimens with high viral load. Accumulation of immature mDCs, which are unable to home to lymph nodes, ultimately results in an inadequate T-cell response.

Lukas Borcherding, Alime Sema Teksen, Bianca Grosser, Tina Schaller, Klaus Hirschbühl, Rainer Claus, Oliver Spring, Michael Wittmann, Christoph Römmele, Éva Sipos, Bruno Märkl

Lukas Borcherding, Alime Sema Teksen, Bianca Grosser... et al. Frontiers in Medicine
2021 A Preliminary Study of Deep-Learning Algorithm for Analyzing Multiplex Immunofluorescence Biomarkers in Body Fluid Cytology Specimens

Akoya, Oncotopix Discovery, Phenoplex, Polaris, Publicly Sharable, Tissuealign, Vectra

Introduction: Multiplex biomarker analysis of cytological body fluid specimens is often used to assist cytologists in distiguishing metastatic cancer cells from reactive meso-thelial cells. However, evaluating biomarker expression visually may be challenging, especially when the cells of interest are scant. Deep-learning algorithms (DLAs) may be able to assist cytologists in analyzing multiple biomarker expression at the single cell level in the multiplex fluores-cence imaging (MFI) setting. This preliminary study was performed to test the feasibility of using DLAs to identify immunofluorescence-stained metastatic adenocarcinoma cells in body fluid cytology samples. Methods: A DLA was developed to analyze MFI-stained cells in body fluid cyto-logical samples. A total of 41 pleural fluid samples, comprising of 20 positives and 21 negatives, were retrospectively collected. Multiplex immunofluorescence labeling for MOC31, BerEP4, and calretinin, were performed on cell block sections, and results were analyzed by manual analysis (manual MFI) and DLA analysis (MFI-DLA) independently. Results: All cases with positive original cytological diagnoses showed positive results either by manual MFI or MFI-DLA, but 2 of the 14 (14.3%) original cytologically negative cases had rare cells with positive MOC31 and/or BerEP4 staining in addition to calretinin. Manual MFI analysis and MFI-DLA showed 100% concordance. Conclusion: MFI combined with DLA provides a potential tool to assist in cytological diagnosis of metastatic malignancy in body fluid samples. Larger studies are warranted to test the clinical validity of the approach.

Weibo Yu, Elizabeth Rao, Curtis D Chin, Josephine S Aguilar-Jakthong, Yunfeng Li, Christine Chow, Shu Yu, Grace Wang, Jianyu Rao

Weibo Yu, Elizabeth Rao, Curtis D Chin... et al. Acta Cytologica
2022 Sex-Dependent Hepatoprotective Role of IL-22 Receptor Signaling in Non-Alcoholic Fatty Liver Disease-Related Fibrosis

Phenoplex, Publicly Sharable

Background & Aims: Nonalcoholic fatty liver disease (NAFLD) is a major health problem with complex pathogenesis. Although sex differences in NAFLD pathogenesis have been reported, the mechanisms underlying such differences remain understudied. Interleukin (IL)22 is a pleiotropic cytokine with both protective and/or pathogenic effects during liver injury. IL22 was shown to be hepatoprotective in NAFLD-related liver injury. However, these studies relied primarily on exogenous administration of IL22 and did not examine the sex-dependent effect of IL22. Here, we sought to characterize the role of endogenous IL22-receptor signaling during NAFLD-induced liver injury in males and females. Methods: We used immunofluorescence, flow cytometry, histopathologic assessment, and gene expression analysis to examine IL22 production and characterize the intrahepatic immune landscape in human subjects with NAFLD (n = 20; 11 men and 9 women) and in an in vivo Western high-fat diet–induced NAFLD model in IL22RA knock out mice and their wild-type littermates. Results: Examination of publicly available data sets from 2 cohorts with NAFLD showed increased hepatic IL22 gene expression in females compared with males. Furthermore, our immunofluorescence analysis of liver sections from NAFLD subjects (n = 20) showed increased infiltration of IL22-producing cells in females. Similarly, IL22-producing cells were increased in wild-type female mice with NAFLD and the hepatic IL22/IL22 binding protein messenger RNA ratio correlated with expression of anti-apoptosis genes. The lack of endogenous IL22-receptor signaling (IL22RA knockout) led to exacerbated liver damage, inflammation, apoptosis, and liver fibrosis in female, but not male, mice with NAFLD. Conclusions: Our data suggest a sex-dependent hepatoprotective antiapoptotic effect of IL22-receptor signaling during NAFLD-related liver injury in females.

Mohamed N. Abdelnabi, Manuel Flores Molina, Geneviève Soucy, Vincent Quoc-Huy Trinh, Nathalie Bédard, Sabrina Mazouz, Nathalie Jouvet, Jessica Dion, Sarah Tran, Marc Bilodeau, Jennifer L. Estall, Naglaa H. Shoukry

Mohamed N. Abdelnabi, Manuel Flores Molina, Geneviève Soucy... et al. Cellular and Molecular Gastroenterology and Hepatology
2022 α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals

Fluidigm, IMC, Phenoplex, Publicly Sharable

BACKGROUND. Multiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the single GADA+ state may represent an early stage of T1D. METHODS. Here, we functionally, histologically, and molecularly phenotyped human islets from nondiabetic GADA+ and T1D donors. RESULTS. Similar to the few remaining β cells in the T1D islets, GADA+ donor islets demonstrated a preserved insulin secretory response. By contrast, α cell glucagon secretion was dysregulated in both GADA+ and T1D islets, with impaired glucose suppression of glucagon secretion. Single-cell RNA-Seq of GADA+ α cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of cAMP-dependent protein kinase inhibitor β (PKIB), providing a molecular basis for the loss of glucose suppression and the increased effect of 3-isobutyl-1-methylxanthine (IBMX) observed in GADA+ donor islets. CONCLUSION. We found that α cell dysfunction was present during the early stages of islet autoimmunity at a time when β cell mass was still normal, raising important questions about the role of early α cell dysfunction in the progression of T1D.

Nicolai M. Doliba, Andrea V. Rozo, Jeffrey Roman, Wei Qin, Daniel Traum, Long Gao, Jinping Liu, Elisabetta Manduchi, Chengyang Liu, Maria L. Golson, Golnaz Vahedi, Ali Naji, Franz M. Matschinsky, Mark A. Atkinson, Alvin C. Powers, Marcela Brissova, Klaus H. Kaestner, Doris A. Stoffers

Nicolai M. Doliba, Andrea V. Rozo, Jeffrey Roman... et al. The Journal of Clinical Investigation
2022 Neutrophil-mediated fibroblast-tumocell il-6/stat-3 signaling underlies the association between neutrophil-to-lymphocyte ratio dynamics and chemotherapy response in localized pancreatic cancer: A hybrid clinical-preclinical study

Fluidigm, IMC, Phenoplex, Publicly Sharable

Background: Partial/complete pathologic response following neoadjuvant chemotherapy (NAC) in pancreatic cancer (PDAC) patients undergoing pancreatectomy is associated with improved survival. We sought to determine whether neutrophil-to-lymphocyte ratio (NLR) dynamics predict pathologic response following chemotherapy in PDAC, and if manipulating NLR impacts chemosensitivity in preclinical models and uncovers potential mechanistic underpinnings underlying these effects. Methods: Pathologic response in PDAC patients (n=94) undergoing NAC and pancreatectomy (7/2015-12/2019) was dichotomized as partial/complete or poor/absent. Bootstrap-validated multi-variable models assessed associations between pre-chemotherapy NLR (%neutrophils÷%lympho-cytes) or NLR dynamics during chemotherapy (ΔNLR = pre-surgery—pre-chemotherapy NLR) and pathologic response, disease-free survival (DFS), and overall survival (OS). To preclinically model effects of NLR attenuation on chemosensitivity, Ptf1aCre/+; KrasLSL-G12D/+;Tgfbr2flox/flox (PKT) mice and C57BL/6 mice orthotopically injected with KrasLSL-G12D/+;Trp53LSL-R172H/+;Pdx1Cre(KPC) cells were randomized to vehicle, gemcitabine/paclitaxel alone, and NLR-attenuating anti-Ly6G with/without gemcitabine/paclitaxel treatment. Results: In 94 PDAC patients undergoing NAC (median:4 months), pre-chemotherapy NLR (p<0.001) and ΔNLR attenuation during NAC (p=0.002) were independently associated with partial/ complete pathologic response. An NLR score = pre-chemotherapy NLR+ΔNLR correlated with DFS (p=0.006) and OS (p=0.002). Upon preclinical modeling, combining NLR-attenuating anti-Ly6G treatment with gemcitabine/paclitaxel—compared with gemcitabine/paclitaxel or anti-Ly6G alone—not only significantly reduced tumor burden and metastatic outgrowth, but also augmented tumor-infiltrating CD107a+-degranulating CD8+ T-cells (p<0.01) while dampening inflammatory cancer-associated fibroblast (CAF) polarization (p=0.006) and chemoresistant IL-6/STAT-3 signaling in vivo. Neutrophil-derived IL-1β emerged as a novel mediator of stromal inflammation, inducing inflammatory CAF polarization and CAF-tumor cell IL-6/STAT-3 signaling in ex vivo co-cultures. Conclusions: Therapeutic strategies to mitigate neutrophil-CAF-tumor cell IL-1β/IL-6/STAT-3 signaling during NAC may improve pathologic responses and/or survival in PDAC.

Iago de Castro Silva, Anna Bianchi, Nilesh U. Deshpande, Prateek Sharma, Siddharth Mehra, Vanessa Tonin Garrido, Shannon Jacqueline Saigh, Jonathan England, Peter Joel Hosein, Deukwoo Kwon, Nipun B. Merchant, Jashodeep Datta

Iago de Castro Silva, Anna Bianchi, Nilesh U. Deshpande... et al. eLife
2022 Multi-parametric analysis of human livers reveals variation in intrahepatic inflammation across phases of chronic hepatitis B infection

Phenoplex, Publicly Sharable, Ultivue

Background & Aims: Chronic HBV is clinically categorized into 4 phases by a combination of serum HBV DNA levels, HBeAg status and alanine aminotransferase (ALT): immunotolerant (IT), immune-active (IA), inactive carrier (IC) and HBeAg-negative hepatitis (ENEG). Immune and virological measurements in the blood have proven useful but are insufficient to explain the interrelation between the immune system and the virus since immune dynamics differ in the blood and liver. Furthermore, the inflammatory response in the liver and parenchymal cells cannot be fully captured in blood. Methods: Immunological composition and transcriptional profiles of core needle liver-biopsies in chronic HBV phases were compared to those of healthy controls by multiplex immunofluorescence and RNA-sequencing (n = 37 and 78, respectively) analyses. Results: Irrespective of the phase-specific serological profiles, increased immune-gene expression and frequency was observed in chronic HBV compared to healthy livers. Greater transcriptomic deregulation was seen in IA and ENEG (172 vs. 243 DEGs) than in IT and IC (13 vs. 35 DEGs) livers. Interferon-stimulated genes, immune-activation and exhaustion genes (ICOS, CTLA4, PDCD1) together with chemokine genes (CXCL10, CXCL9) were significantly induced in IA and ENEG livers. Moreover, distinct immune profiles associated with ALT elevation and a more accentuated immune-exhaustion profile (CTLA4, TOX, SLAMF6, FOXP3) were observed in ENEG, which set it apart from the IA phase (LGALS9, PDCD1). Interestingly, all HBV phases showed downregulation of metabolic pathways vs. healthy livers (fatty and bile acid metabolism). Finally, increased leukocyte infiltrate correlated with serum ALT, but not with HBV DNA or viral proteins. Conclusion: Our comprehensive multi-parametric analysis of human livers revealed distinct inflammatory profiles and pronounced differences in intrahepatic gene profiles across all chronic HBV phases in comparison to healthy liver. Lay summary: Immunological studies on chronic HBV remain largely restricted to assessment of peripheral responses due to the limited access to the site of infection, the liver. In this study, we comprehensively analyzed livers from a well-defined cohort of patients with chronic HBV and uninfected controls with state-of-the-art techniques, and evaluated the differences in gene expression profiles and inflammation characteristics across distinct disease phases in patients with chronic HBV.

Noe Rico Montanari, Ricardo Ramírez, Abhishek Aggarwal, Nick van Buuren, Michael Doukas, Christina Moon, Scott Turner, Lauri Diehl, Li Li, Jose D. Debes, Becket Feierbach, Andre Boonstra

Noe Rico Montanari, Ricardo Ramírez, Abhishek Aggarwal... et al. Journal of Hepatology
2022 Immune Contexture and Differentiation Features Predict Outcome in Bladder Cancer

Phenoplex, Publicly Sharable, TMA, Tissuealign

BACKGROUND: An improved risk assessment of patients with bladder cancer (BC) is important to optimize clinical management. OBJECTIVE: To identify whether immune cell subpopulations and cancer cell-intrinsic features are associated with outcome and response to first-line chemotherapy in BC. DESIGN, SETTING, AND PARTICIPANTS: Primary tumor tissue from 785 patients with BC (stage Ta-T4b) were stained using multiplex immunofluorescence (CD3, CD8, FOXP3, CD20, CD68, CD163, and MHC-I) and immunohistochemistry (pancytokeratin, CK5/6, GATA3, programmed death 1 [PD-1], and programmed death ligand 1 [PD-L1]). A digital image analysis quantified staining results within the carcinoma cell and stromal part of the tumor. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Primary endpoints were progression-free survival, recurrence-free survival, and response to first-line chemotherapy. Optimal cutoff values for investigated markers were estimated using maximally selected rank statistics and receiver operating characteristic for each primary endpoint. Time-to-event analyses were performed using Cox regression analyses. RESULTS AND LIMITATIONS: Several immune subpopulations were independently associated with clinical outcomes. Especially, high PD-1 and PD-L1 expression was independently associated with an increased risk of recurrence and progression in non-muscle-invasive tumors, but with a lower risk of recurrence in muscle-invasive tumors. Furthermore, we observed a lower likelihood of response to first-line chemotherapy in patients with basal differentiation features. Finally, a model combining clinical risk factors with our most evident prognosticator improved prediction accuracy compared with clinical risk factors alone for progression in non-muscle-invasive BC and recurrence in muscle-invasive BC. The use of tissue microarrays and a long inclusion period are limitations to this study. CONCLUSIONS: Immune cell subpopulations and cancer cell-intrinsic features are associated with different clinical outcomes in BC. PATIENT SUMMARY: Immune cells play an important role in cancer development and treatment outcomes. Infiltration with specific immune cells and the presence of markers associated with immune evasion in the tumor predict clinical outcomes in bladder cancer.

Ann Taber, Frederik Prip, Philippe Lamy, Mads Agerbæk, Jørgen Bjerggaard Jensen, Torben Steiniche, Lars Dyrskjøt

Ann Taber, Frederik Prip, Philippe Lamy... et al. European Urology Oncology
2022 Identification of Similarities Between Skin Lesions in Patients With Antisynthetase Syndrome and Skin Lesions in Patients With Dermatomyositis by Highly Multiplexed Imaging Mass Cytometry

Fluidigm, IMC, Phenoplex, Publicly Sharable, SBI

Objective: Antisynthetase syndrome (ASyS) and dermatomyositis (DM) are autoimmune disorders that overlap clinically. Given the presence of DM-like skin lesions in ASyS patients, there is debate about whether ASyS is a distinct disease or a subclassification of DM. Recent studies identified differences in type I interferon (IFN) expression between ASyS and DM muscle and finger eruptions. This study was undertaken to elucidate similarities and differences in the pathogenesis of cutaneous disease in ASyS and DM at the single-cell level. Methods: Five ASyS patients and 7 DM patients were recruited from a prospectively collected database of well-characterized DM patients. ASyS patients were clinically confirmed as having ASyS according to the Connors et al criteria and the Solomon et al criteria and the presence of aminoacyl–transfer RNA synthetase antibodies. Immunophenotyping was conducted using immunofluorescence (IF) and imaging mass cytometry (IMC). Results: IF staining for MxA and IFNβ expression revealed up-regulation of type I IFN in ASyS and DM samples compared to healthy control samples (P < 0.05). IMC showed similar numbers of macrophages, T cells, B cells, and dendritic cells in ASyS and DM samples, with no differences in counts (P > 0.05), but an increase in myeloid dendritic cell percentage in DM samples (P < 0.05). Key type I IFN, cytokine, and JAK/STAT pathways were similarly expressed in both ASyS and DM (P > 0.05). At the single-cell level, macrophages positive for phosphorylated stimulator of IFN genes in ASyS samples expressed increased levels of tumor necrosis factor, interluekin-17 (IL-17), and IFNβ (P < 0.001). Conclusion: IMC is a powerful tool that identifies a role for the type I IFN system in DM-like skin lesions in ASyS and DM with some differences at the cellular level, but overall significant overlap, supporting similar therapeutic decision making.

Jay Patel, Adarsh Ravishankar, Spandana Maddukuri, Thomas Vazquez, Madison Grinnell, Victoria P. Werth

Jay Patel, Adarsh Ravishankar, Spandana Maddukuri... et al. Arthritis & Rheumatology
2022 Central nervous system immune interactome is a function of cancer lineage, tumor microenvironment, and STAT3 expression

Akoya, Phenoplex, Polaris, Publicly Sharable, Vectra, nice

BACKGROUND. Immune cell profiling of primary and metastatic CNS tumors has been focused on the tumor, not the tumor microenvironment (TME), or has been analyzed via biopsies. METHODS. En bloc resections of gliomas (n = 10) and lung metastases (n = 10) were analyzed via tissue segmentation and high-dimension Opal 7-color multiplex imaging. Single-cell RNA analyses were used to infer immune cell functionality. RESULTS. Within gliomas, T cells were localized in the infiltrating edge and perivascular space of tumors, while residing mostly in the stroma of metastatic tumors. CD163+ macrophages were evident throughout the TME of metastatic tumors, whereas in gliomas, CD68+, CD11c+CD68+, and CD11c+CD68+CD163+ cell subtypes were commonly observed. In lung metastases, T cells interacted with CD163+ macrophages as dyads and clusters at the brain-tumor interface and within the tumor itself and as clusters within the necrotic core. In contrast, gliomas typically lacked dyad and cluster interactions, except for T cell CD68+ cell dyads within the tumor. Analysis of transcriptomic data in glioblastomas revealed that innate immune cells expressed both proinflammatory and immunosuppressive gene signatures. CONCLUSION. Our results show that immunosuppressive macrophages are abundant within the TME and that the immune cell interactome between cancer lineages is distinct. Further, these data provide information for evaluating the role of different immune cell populations in brain tumor growth and therapeutic responses.

Hinda Najem, Martina Ott, Cynthia Kassab, Arvind Rao, Ganesh Rao, Anantha Marisetty, Adam M. Sonabend, Craig Horbinski, Roel Verhaak, Anand Shankar, Santhoshi N. Krishnan, Frederick S. Varn, Víctor A. Arrieta, Pravesh Gupta, Sherise D. Ferguson, Jason T. Huse, Gregory N. Fuller, James P. Long, Daniel E. Winkowski, Ben A. Freiberg, Charles David James, Leonidas C. Platanias, Maciej S. Lesniak, Jared K. Burks, Amy B. Heimberger

Hinda Najem, Martina Ott, Cynthia Kassab... et al. JCI Insight
2023 Spatial Immunoprofiling of Adenoid Cystic Carcinoma Reveals B7-H4 Is a Therapeutic Target for Aggressive Tumors

Fluidigm, IMC, Phenoplex, Publicly Sharable

Purpose: Adenoid cystic carcinoma (ACC) is a heterogeneous malignancy, and no effective systemic therapy exists for metastatic disease. We previously described two prognostic ACC molecular subtypes with distinct therapeutic vulnerabilities, ACC-I and ACC-II. In this study, we explored the ACC tumor microenvironment (TME) using RNA-sequencing and spatial biology to identify potential therapeutic targets. Experimental Design: Tumor samples from 62 ACC patients with available RNA-sequencing data that had been collected as part of previous studies were stained with a panel of 28 validated metal-tagged antibodies. Imaging mass cytometry (IMC) was performed using the Fluidigm Helios CyTOF instrument and analyzed with Visiopharm software. The B7-H4 antibody–drug conjugate AZD8205 was tested in ACC patient-derived xenografts (PDX). Results: RNA deconvolution revealed that most ACCs are immunologically “cold,” with approximately 30% being “hot.” ACC-I tumors with a poor prognosis harbored a higher density of immune cells; however, spatial analysis by IMC revealed that ACC-I immune cells were significantly restricted to the stroma, characterizing an immune-excluded TME. ACC-I tumors overexpressed the immune checkpoint B7-H4, and the degree of immune exclusion was directly correlated with B7-H4 expression levels, an independent predictor of poor survival. Two ACC-I/B7-H4-high PDXs obtained 90% complete responses to a single dose of AZD8205, but none were observed with isotype-conjugated payload or in an ACC-II/B7-H4 low PDX. Conclusions: Spatial analysis revealed that ACC subtypes have distinct TMEs, with enrichment of ACC-I immune cells that are restricted to the stroma. B7-H4 is highly expressed in poor-prognosis ACC-I subtype and is a potential therapeutic target.

Luana Guimaraes Sousa, Daniel J. McGrail, Felippe Lazar Neto, Kaiyi Li, Mario L. Marques-Piubelli, Sammy Ferri-Borgogno, Hui Dai, Yoshitsugu Mitani, Nicole Spardy Burr, Zachary A. Cooper, Krista Kinneer, Maria Angelica Cortez, Shiaw-Yih Lin, Diana Bell, Adel El Naggar, Jared Burks, Renata Ferrarotto

Luana Guimaraes Sousa, Daniel J. McGrail, Felippe Lazar Neto... et al. Clin Cancer Res
2023 Small Leucine-Rich Proteoglycan PODNL1 Identified as a Potential Tumor Matrix-Mediated Biomarker for Prognosis and Immunotherapy in a Pan-Cancer Setting

Phenoplex, Publicly Sharable

The podocan-like protein 1 (PODNL1), an important member of the small leucine-rich proteoglycans (SLRP) family, is a crucial component of the tumor microenvironment (TME). But its prognostic values and the role in the TME have not been systematically estimated in a pan-cancer setting. Targeting PODNL1, a systematic exploration into the TCGA datasets, reconciling with the analyses of single-cell transcriptomes and immunotherapeutic cohorts in cancers, and validation by tissue microarray-based multiplex immunofluorescence staining was performed. PODNL1 was significantly correlated with the poor prognosis and immunotherapeutic responses in various cancers. In-depth demonstration of molecular mechanisms indicated that PODNL1 expressions were notably positively correlated with cancer-associated fibroblast (CAF) infiltration levels in 33 types of cancers. It also positively correlated with the pan-fibroblast TGF-β response signature score, and the hallmarks including TGF-β, TNF-α, inflammatory response, apical junction, epithelial-mesenchymal transition and hedgehog in pan-cancer. Furthermore, high PODNL1 expressions were positively related with the regulation of tumor-promoting TGF-β signaling through downregulating SMAD2/3:4 heterotrimer regulations transcription and up-regulating the pathway restricted SMAD protein phosphorylation. Single-cell transcriptome analyses and immunofluorescence validations indicated that PODNL1 was predominantly expressed in the cancer cells and CAFs in various cancers. Additionally, the hetero-geneity of cancer genotype-phenotype cross-talking was also observed associated with PODNL1. Our systematic study indicates that PODNL1 plays an important role in the complex regulation network of tumor progression, and lays a foundation for further exploration to develop PODNL1 as a valuable matrix-mediated biomarker for cancer immunotherapy and prognosis in a pan-cancer setting.

Geyang Dai, Yue Sun, Rui Wei, Ling Xi

Geyang Dai, Yue Sun, Rui Wei... et al. Curr. issues mol. biol.
2023 Spatial Transcriptomics of Intraductal Papillary Mucinous Neoplasms of the Pancreas Identifies NKX6-2 as a Driver of Gastric Differentiation and Indolent Biological Potential

Comet, Lunaphore, Phenoplex, Publicly Sharable

Intraductal Papillary Mucinous Neoplasms (IPMNs) of the pancreas are bona fide precursor lesions of pancreatic ductal adenocarcinoma (PDAC). The most common subtype of IPMNs harbor a gastric foveolar-type epithelium, and these low-grade mucinous neoplasms are harbingers of IPMNs with high-grade dysplasia and cancer. The molecular underpinning of gastric differentiation in IPMNs is unknown, although identifying drivers of this indolent phenotype might enable opportunities for intercepting progression to high-grade IPMN and cancer. We conducted spatial transcriptomics on a cohort of IPMNs, followed by orthogonal and cross species validation studies, which established the transcription factor NKX6-2 as a key determinant of gastric cell identity in low-grade IPMNs. Loss of NKX6-2 expression is a consistent feature of IPMN progression, while re-expression of NKX6-2 in murine IPMN lines recapitulates the aforementioned gastric transcriptional program and glandular morphology. Our study identifies NKX6-2 as a previously unknown transcription factor driving indolent gastric differentiation in IPMN pathogenesis.

Marta Sans, Yuki Makino, Jimin Min, Kimal I. Rajapakshe, Michele Yip-Schneider, C. Max Schmidt, Mark W. Hurd, Jared K. Burks, Javier A. Gomez, Fredrik I. Thege, Johannes F. Fahrmann, Robert A. Wolff, Michael P. Kim, Paola A. Guerrero, Anirban Maitra

Marta Sans, Yuki Makino, Jimin Min... et al. Cancer discovery
2023 Cisplatin exhibits superiority over MMC as a perfusion agent in a peritoneal mesothelioma patient specific organoid HIPEC platform

Phenoplex, Publicly Sharable

Peritoneal mesothelioma (PM) is a rare malignancy with poor prognosis, representing about 10–15% of all mesothelioma cases. Herein we apply PM patient-derived tumor organoids (PTOs) in elucidating personalized HIPEC responses to bypass rarity of disease in generating preclinical data. Specimens were obtained from PM patients undergoing cytoreductive surgery with HIPEC. PTOs were fabricated with tumor cells suspended in ECM-hydrogel and treated with HIPEC regimen parameters. Viability and characterization analyses were performed post-treatment. Treatment efficacy was defined as ≥ 50% viability reduction and p < 0.05 compared to controls. From October 2020 to November 2022, 17 tumors from 7 patients were biofabricated into organoids, with 16/17 (94.1%) sites undergoing comparative 37° and 42° treatments with cisplatin and mitomycin C (MMC). Hyperthermic cisplatin and MMC enhanced cytotoxicity which reduced treatment viability by 25% and 22%, respectively, compared to normothermia. Heated cisplatin displayed the greatest cytotoxicity, with efficacy in 12/16 (75%) tumors and an average viability of 38% (5–68%). Heated MMC demonstrated efficacy in 7/16 (43.8%) tumors with an average treatment viability of 51% (17–92.3%). PTOs fabricated from distinct anatomic sites exhibited site-specific variability in treatment responses. PM PTOs exhibit patient and anatomic location treatment responses suggestive of underlying disease clonality. In PM organoids cisplatin is superior to MMC in HIPEC.

Steven D. Forsythe, Richard A. Erali, Nicholas Edenhoffer, William Meeker, Nadeem Wajih, Cecilia R. Schaaf, Preston Laney, Cristian D. Vanezuela, Wencheng Li, Edward A. Levine, Shay Soker, Konstantinos I. Votanopoulos

Steven D. Forsythe, Richard A. Erali, Nicholas Edenhoffer... et al. Scientific Reports
2023 Radiomics using computed tomography to predict CD73 expression and prognosis of colorectal cancer liver metastases

Phenoplex, Publicly Sharable, TMA

Finding a noninvasive radiomic surrogate of tumor immune features could help identify patients more likely to respond to novel immune checkpoint inhibitors. Particularly, CD73 is an ectonucleotidase that catalyzes the breakdown of extracellular AMP into immunosuppressive adenosine, which can be blocked by therapeutic antibodies. High CD73 expression in colorectal cancer liver metastasis (CRLM) resected with curative intent is associated with early recurrence and shorter patient survival. The aim of this study was hence to evaluate whether machine learning analysis of preoperative liver CT-scan could estimate high vs low CD73 expression in CRLM and whether such radiomic score would have a prognostic significance. We trained an Attentive Interpretable Tabular Learning (TabNet) model to predict, from preoperative CT images, stratified expression levels of CD73 (CD73High vs. CD73Low) assessed by immunofluorescence (IF) on tissue microarrays. Radiomic features were extracted from 160 segmented CRLM of 122 patients with matched IF data, preprocessed and used to train the predictive model. We applied a five-fold cross-validation and validated the performance on a hold-out test set. TabNet provided areas under the receiver operating characteristic curve of 0.95 (95% CI 0.87 to 1.0) and 0.79 (0.65 to 0.92) on the training and hold-out test sets respectively, and outperformed other machine learning models. The TabNet-derived score, termed rad-CD73, was positively correlated with CD73 histological expression in matched CRLM (Spearman’s ρ = 0.6004; P < 0.0001). The median time to recurrence (TTR) and disease-specific survival (DSS) after CRLM resection in rad-CD73High vs rad-CD73Low patients was 13.0 vs 23.6 months (P = 0.0098) and 53.4 vs 126.0 months (P = 0.0222), respectively. The prognostic value of rad-CD73 was independent of the standard clinical risk score, for both TTR (HR = 2.11, 95% CI 1.30 to 3.45, P < 0.005) and DSS (HR = 1.88, 95% CI 1.11 to 3.18, P = 0.020). Our findings reveal promising results for non-invasive CT-scan-based prediction of CD73 expression in CRLM and warrant further validation as to whether rad-CD73 could assist oncologists as a biomarker of prognosis and response to immunotherapies targeting the adenosine pathway.

Ralph Saber, David Henault, Nouredin Messaoudi, Rolando Rebolledo, Emmanuel Montagnon, Geneviève Soucy, John Stagg, An Tang, Simon Turcotte, Samuel Kadoury

Ralph Saber, David Henault, Nouredin Messaoudi... et al. Journal of Translational Medicine
2023 Patients with fibrosis from non-alcoholic steatohepatitis have heterogeneous intrahepatic macrophages and therapeutic targets

Phenoplex, Publicly Sharable

Background and Aims In clinical trials for reducing fibrosis in NASH patients, therapeutics that target macrophages have had variable results. We evaluated intrahepatic macrophages in patients with non-alcoholic steatohepatitis to determine if fibrosis influenced phenotypes and expression of CCR2 and Galectin-3. Approach & Results We used nCounter to analyze liver biopsies from well-matched patients with minimal (n=12) or advanced (n=12) fibrosis to determine which macrophage-related genes would be significantly different. Known therapy targets (e.g., CCR2 and Galectin-3) were significantly increased in patients with cirrhosis. However, several genes (e.g., CD68, CD16, and CD14) did not show significant differences, and CD163, a marker of pro-fibrotic macrophages was significantly decreased with cirrhosis. Next, we analyzed patients with minimal (n=6) or advanced fibrosis (n=5) using approaches that preserved hepatic architecture by multiplex-staining with anti-CD68, Mac387, CD163, CD14, and CD16. Spectral data were analyzed using deep learning/artificial intelligence to determine percentages and spatial relationships. This approach showed patients with advanced fibrosis had increased CD68+, CD16+, Mac387+, CD163+, and CD16+CD163+ populations. Interaction of CD68+ and Mac387+ populations was significantly increased in patients with cirrhosis and enrichment of these same phenotypes in individuals with minimal fibrosis correlated with poor outcomes. Evaluation of a final set of patients (n=4) also showed heterogenous expression of CD163, CCR2, Galectin-3, and Mac387, and significant differences were not dependent on fibrosis stage or NAFLD activity. Conclusions Approaches that leave hepatic architecture intact, like multispectral imaging, may be paramount to developing effective treatments for NASH. In addition, understanding individual differences in patients may be required for optimal responses to macrophage-targeting therapies. * AIH NAFLD NAS NASH

Omar A Saldarriaga, Santhoshi Krishnan, Timothy G Wanninger, Morgan Oneka, Arvind Rao, Daniel Bao, Esteban Arroyave, Joseph Gosnell, Michael Kueht, Akshata Moghe, Daniel Millian, Jingjing Jiao, Jessica I Sanchez, Heidi Spratt, Laura Beretta, Heather L Stevenson, Associate Professor

Omar A Saldarriaga, Santhoshi Krishnan, Timothy G Wanninger... et al. medRxiv
2024 Protocol to quantify immune cell distribution from the vasculature to the glioma microenvironment on sequential immunofluorescence multiplex images

Lunaphore, Phenoplex, Publicly Sharable, comet

Steps for sequential multiplex immunofluorescence staining on the COMET system Deep learning algorithms for tissue segmentation, vessel, and nuclei detection Instructions to quantify and phenotype immune cells relative to the vasculature Steps for data extraction and manipulation through RStudio and Spyder Although myeloid-derived immune cells can be dispersed throughout the tumor microenvironment (TME), anti-tumor effector cells are confined to the perivascular space. Here, we present a protocol to quantify immune cell distribution from tumor vasculature to its glioma microenvironment on sequential immunofluorescence multiplex images. We describe steps for sequential immunofluorescence multiplex staining, image generation, and storage. We then detail the procedures for tissue, vessel, and nuclei segmentation; cell phenotyping; data extraction; and training using RStudio and Spyder. In solid tumors, there is not uniform distribution of immune cells throughout the TME because of chemokines gradients, osmotic pressures, and physical stromal barriers, to name a few. This lack of immune cell distribution is further confounded in the case of central nervous system tumors because of the variable presence of the blood-brain barrier (BBB). Innate immune cells such as macrophages constitute a frequent peripheral originating immune cell population that can distribute widely throughout the glioma TME1,2; however, T cell responses are typically confined to the perivascular niche.3 With the development of strategies that now open the BBB in clinical trials4 and a variety of immune therapeutics that may enhance distribution,5 quantification of immune cells in various TME regions will be increasingly needed for endpoint evaluations during window-of-opportunity clinical trials.6,7 The protocol below describes the specific steps for spatial bioinformatic analysis of immune cell distribution from the tumor vasculature on sequential multiplex immunofluorescence images. Baseline immune cell distribution including markers of activation and immune suppression in gliomas, before initiating an immunotherapy clinical trial, were quantified based on the distribution in the TME as a function of the tumor vasculature.

Hinda Najem, Sebastian Pacheco, Joanna Kowal, Dan Winkowski, Jared K. Burks, Amy B. Heimberger

Hinda Najem, Sebastian Pacheco, Joanna Kowal... et al. STAR Protocols
2024 Single-cell and spatial transcriptomics analysis of non-small cell lung cancer

Akoya, Phenocycler, Phenoplex, Publicly Sharable

Lung cancer is the second most frequently diagnosed cancer and the leading cause of cancer-related mortality worldwide. Tumour ecosystems feature diverse immune cell types. Myeloid cells, in particular, are prevalent and have a well-established role in promoting the disease. In our study, we profile approximately 900,000 cells from 25 treatment-naive patients with adenocarcinoma and squamous-cell carcinoma by single-cell and spatial transcriptomics. We note an inverse relationship between anti-inflammatory macrophages and NK cells/T cells, and with reduced NK cell cytotoxicity within the tumour. While we observe a similar cell type composition in both adenocarcinoma and squamous-cell carcinoma, we detect significant differences in the co-expression of various immune checkpoint inhibitors. Moreover, we reveal evidence of a transcriptional “reprogramming” of macrophages in tumours, shifting them towards cholesterol export and adopting a foetal-like transcriptional signature which promotes iron efflux. Our multi-omic resource offers a high-resolution molecular map of tumour-associated macrophages, enhancing our understanding of their role within the tumour microenvironment. Myeloid cell populations play a critical role in lung cancer progression. Here, the authors use scRNA-seq and spatial transcriptomics to identify changes in the phenotype of macrophages within the tumour microenvironment.

Marco De Zuani, Haoliang Xue, Jun Sung Park, Stefan C. Dentro, Zaira Seferbekova, Julien Tessier, Sandra Curras-Alonso, Angela Hadjipanayis, Emmanouil I. Athanasiadis, Moritz Gerstung, Omer Bayraktar, Ana Cvejic

Marco De Zuani, Haoliang Xue, Jun Sung Park... et al. Nature Communications
2024 Cancer-associated fibroblast–secreted collagen is associated with immune inhibitor receptor LAIR1 in gliomas

Letter, Phenoplex, Publicly Sharable

A recently published JCI paper revealed that cancer-associated fibroblasts (CAFs) are present in glioblastoma and are defined by the presence of 9 transcriptional markers (1). CAFs can form a barrier around cancer cells that prevents their detection by T cells (2). The normal brain has low levels of collagen, but deposition increases in gliomas, especially around vessels. In addition to collagen facilitating tumor invasion and providing a niche for cancer stem cells, collagen has also been shown to trigger immune suppression through LAIR1-mediated T cell exhaustion and alternative activation of macrophages (3, 4).

Shashwat Tripathi, Hinda Najem, Corey Dussold, Sebastian Pacheco, Jason Miska, Kathleen McCortney, Alicia Steffens, Jordain Walshon, Daniel Winkowski, Michael Cloney, Matthew Ordon, William Gibson, Hanna Kemeny, Mark Youngblood, Rebecca Du, James Mossner, Pavlos Texakalidis, Annelise Sprau, Matthew Tate, Charles David James, Craig M. Horbinski, Nitin R. Wadhwani, Maciej S. Lesniak, Sandi Lam, Ankita Sati, Manish Aghi, Michael DeCuypere, Amy B. Heimberger

Shashwat Tripathi, Hinda Najem, Corey Dussold... et al. The Journal of Clinical Investigation
2024 Spatial profiling of ovarian carcinoma and tumor microenvironment evolution under neoadjuvant chemotherapy

Phenoplex, Publicly Sharable, TMA

Purpose: Immune tumor microenvironment (iTME) determines ovarian cancer development. This study investigates changes in HLA-I expression, CD8+/Foxp3 ratio, CD8+ cells and coregulators density at diagnosis and upon neoadjuvant chemotherapy (NACT), correlating changes with clinical outcomes. Experimental design: Multiplexed immune profiling and cell clustering analysis was performed on paired matched OC samples to characterize the iTME at diagnosis and under NACT from patients enrolled in the CHIVA trial (NCT01583322). Results: Several immune cells (IC) subsets and immune coregulators were quantified pre-/post-NACT. At diagnosis, patients with higher CD8+ T cells and HLA-1+ enriched tumors were associated with ­better outcome. The CD8+/Foxp3+ ratio increased significantly post-NACT in favor of increased immune surveillance and the influx of CD8+ T cells predicted better outcomes. Clustering analysis stratified pre-NACT tumors into 4 subsets: high Binf, enriched in B clusters; high Tinf, low Tinf, according to their CD8+ density; and desert clusters. At baseline, these clusters were not correlated with patient outcomes. Under NACT, tumors segregated into 3 clusters: high BinfTinf, low Tinf and desert. The high BinfTinf, more diverse in IC composition encompassing T, B and NK cell, correlated with improved survival. PD-L1 was rarely expressed, while TIM-3, LAG- and IDO-1 were more prevalent. Conclusions: Several iTMEs exist during tumor evolution and NACT impact on iTME is heterogeneous. Clustering analysis of patients, unravels several IC subsets within OC and can guide future personalized approaches. Targeting different checkpoints such as TIM-3, LAG-3 and IDO-1, more prevalent than PD-L1, could more effectively harness anti-tumor immunity in this anti-PD-L1 resistant malignancy.

Elisa Yaniz-Galende, Qinghe Zeng, Juan Francisco Grau-Bejar, Christophe Klein, Félix Blanc-Durand, Audrey Le Formal, Eric Pujade-Lauraine, Laure Chardin, Elodie Edmond, Virginie Marty, Isabelle Ray-Coquard, Florence Joly, Gwenaël Ferron, Patricia Pautier, Dominique Berton-Rigaud, Alain Lortholary, Nadine Dohollou, Christophe Desauw, Michel Fabbro, Emmanuelle Malaurie, Nathalie Bonichon-Lamichhane, Diana Bello Roufai, Justine Gantzer, Etienne Rouleau, Catherine Genestie, Alexandra Leary

Elisa Yaniz-Galende, Qinghe Zeng, Juan Francisco Grau-Bejar... et al. Clinical cancer research
2024 Targeting sinonasal undifferentiated carcinoma with a combinatory immunotherapy approach

Phenoplex, Publicly Sharable

Purpose: Sinonasal undifferentiated carcinoma (SNUC) is a rare, aggressive malignancy of the sinonasal cavity with poor prognosis and limited treatment options. To investigate the potential for SNUC sensitivity to combinatory immunotherapy, we performed in vitro studies with SNUC cell lines and used multi-spectral immunofluorescence to characterize the in vivo patient SNUC tumor immune microenvironment (TIME). Experimental design: Human-derived SNUC cell lines were used for in vitro studies of tumor cell susceptibility to natural killer (NK) cell-based immunotherapeutic strategies. Tumor samples from 14 treatment naïve SNUC patients were examined via multi-spectral immunofluorescence and clinical correlations assessed. Results: Anti-PD-L1 blockade enhanced NK cell lysis of SNUC cell lines ∼5.4 fold (P ≤ 0.0001). This effect was blocked by a CD16 neutralizing antibody demonstrating activity through an antibody-dependent cellular cytotoxicity (ADCC) mediated pathway. ADCC-dependent lysis of SNUC cells was further enhanced by upregulation of PD-L1 on tumor cells by exogenous interferon-gamma (IFN-γ) administration or interleukin-15 (IL-15) stimulated IFN-γ release from NK cells. Combination treatment with anti-PD-L1 blockade and IL-15 superagonism enhanced NK-cell killing of SNUC cells 9.6-fold (P ≤ 0.0001). Untreated SNUC patient tumor samples were found to have an NK cell infiltrate and PD-L1+ tumor cells at a median of 5.4 cells per mm2. A striking 55.7-fold increase in CKlow tumor cell/NK cell interactions was observed in patients without disease recurrence after treatment (P = 0.022). Patients with higher CD3+CD8+ in the stroma had a significantly improved 5-year overall survival (P = 0.0029) and a significant increase in CKlow tumor cell/CD8+ cytotoxic T cell interactions was noted in long-term survivors (P = 0.0225). Conclusion: These data provide the pre-clinical rationale for ongoing investigation into combinatory immunotherapy approaches for SNUC.

Austin T.K. Hoke, Yoko Takahashi, Michelle R. Padget, Javier Gomez, Moran Amit, Jared Burks, Diana Bell, Tongxin Xie, Patrick Soon-Shiong, James W. Hodge, Ehab Y. Hanna, Nyall R. London

Austin T.K. Hoke, Yoko Takahashi, Michelle R. Padget... et al. Translational Oncology
2024 Effects of sporadic inclusion body myositis on skeletal muscle fibre type specific morphology and markers of regeneration and inflammation

Phenoplex, Publicly Sharable

Sporadic inclusion body myositis (sIBM) is a subgroup of idiopathic inflammatory myopathies characterised by progressive muscle weakness and skeletal muscle inflammation. Quantitative data on the myofibre morphology in sIBM remains scarce. Further, no previous study has examined fibre type association of satellite cells (SC), myonuclei number, macrophages, capillaries, and myonuclear domain (MD) in sIBM patients. Muscle biopsies from sIBM patients (n = 18) obtained previously (NCT02317094) were included in the analysis for fibre type-specific myofibre cross-sectional area (mCSA), SCs, myonuclei and macrophages, myonuclear domain, and capillarisation. mCSA (p < 0.001), peripheral myonuclei (p < 0.001) and MD (p = 0.005) were higher in association with type 1 (slow-twitch) than type 2 (fast-twitch) fibres. Conversely, quiescent SCs (p < 0.001), centrally placed myonuclei (p = 0.03), M1 macrophages (p < 0.002), M2 macrophages (p = 0.013) and capillaries (p < 0.001) were higher at type 2 fibres compared to type 1 fibres. In contrast, proliferating (Pax7+/Ki67+) SCs (p = 0.68) were similarly associated with each fibre type. Type 2 myofibres of late-phase sIBM patients showed marked signs of muscle atrophy (i.e. reduced mCSA) accompanied by higher numbers of associated quiescent SCs, centrally placed myonuclei, macrophages and capillaries compared to type 1 fibres. In contrast, type 1 fibres were suffering from pathological enlargement with larger MDs as well as fewer nuclei and capillaries per area when compared with type 2 fibres. More research is needed to examine to which extent different therapeutic interventions including targeted exercise might alleviate these fibre type-specific characteristics and countermeasure their consequences in impaired functional performance.

Kasper Yde Jensen, Jakob Lindberg Nielsen, Per Aagaard, Mikkel Jacobsen, Anders Nørkaer Jørgensen, Rune Dueholm Bech, Ulrik Frandsen, Louise Pyndt Diederichsen, Henrik Daa Schrøder

Kasper Yde Jensen, Jakob Lindberg Nielsen, Per Aagaard... et al. Rheumatology International
2024 Spatial omics reveals molecular changes in focal cortical dysplasia type II

Oncotopix Discovery, Phenoplex, Publicly Sharable

Focal cortical dysplasia (FCD) represents a group of diverse localized cortical lesions that are highly epileptogenic and occur due to abnormal brain development caused by genetic mutations, involving the mammalian target of rapamycin (mTOR). These somatic mutations lead to mosaicism in the affected brain, posing challenges to unravel the direct and indirect functional consequences of these mutations. To comprehensively characterize the impact of mTOR mutations on the brain, we employed here a multimodal approach in a preclinical mouse model of FCD type II (Rheb), focusing on spatial omics techniques to define the proteomic and lipidomic changes. Mass Spectrometry Imaging (MSI) combined with fluorescence imaging and label free proteomics, revealed insight into the brain's lipidome and proteome within the FCD type II affected region in the mouse model. MSI visualized disrupted neuronal migration and differential lipid distribution including a reduction in sulfatides in the FCD type II-affected region, which play a role in brain myelination. MSI-guided laser capture microdissection was conducted on FCD type II and control regions, followed by label free proteomics, revealing changes in myelination pathways by oligodendrocytes. Surgical resections of FCD type IIb and postmortem human cortex were analyzed by bulk transcriptomics to unravel the interplay between genetic mutations and molecular changes in FCD type II. Our comparative analysis of protein pathways and enriched Gene Ontology pathways related to myelination in the FCD type II-affected mouse model and human FCD type IIb transcriptomics highlights the animal model's translational value. This dual approach, including mouse model proteomics and human transcriptomics strengthens our understanding of the functional consequences arising from somatic mutations in FCD type II, as well as the identification of pathways that may be used as therapeutic strategies in the future. Focal cortical dysplasia Mass spectrometry imaging Proteomics Transcriptomics Lipidomics Spatial omics

Isabeau Vermeulen, Natalia Rodriguez-Alvarez, Liesbeth François, Delphine Viot, Fariba Poosti, Eleonora Aronica, Stefanie Dedeurwaerdere, Patrick Barton, Berta Cillero-Pastor, Ron M.A. Heeren

Isabeau Vermeulen, Natalia Rodriguez-Alvarez, Liesbeth François... et al. Neurobiology of Disease
2024 Remodeling the tumor-immune microenvironment by anti-CTLA4 blockade enhanced subsequent anti-PD-1 efficacy in advanced nasopharyngeal carcinoma

Phenoplex, Publicly Sharable

Sequential immunotherapy has shown certain advantages in malignancy. Here, we aim to evaluate the efficacy of sequential anti-CTLA-4 and anti-PD-1 treatment for recurrent or metastatic nasopharyngeal carcinoma patients (R/M NPC). We retrospectively analysis 2 phase I trial of ipilimumab and camrelizumab in Chinese R/M NPC patients. These patients were initially treated with ipilimumab, a CTLA4 blockade, followed by anti-PD-1 treatment. We observed a durable tumor remission in these patients (mPFS: 12.3 months; mDoR: 20.9 months). Multimodal investigations of biopsy samples disclosed remodeling of tumor-immune microenvironment triggered by ipilimumab. In responders, we found increased tumoral PD-L1/PD-L2 expression and T-cell infiltration after ipilimumab treatment, accompanied by reduced stroma and malignant cell components. In contrast, non-responders exhibited increased B-cell infiltration and increased peripheral CD19 + B cells, suggesting a defective transition from memory B cells to plasma cells. This study proposes that sequential therapy can potentially enhance treatment efficacy in chemotherapy-resistant NPC patients and provides insights into how preexisting anti-CTLA4 blockade can influence subsequent anti-PD-1 efficacy by remodeling the TME. Additionally, our results highlight the need for therapeutic strategies targeting naïve/memory B cells.

Yuxiang Ma, Huaqiang Zhou, Fan Luo, Yang Zhang, Changbin Zhu, Weiwei Li, Zhan Huang, Jingbo Zhao, Jinhui Xue, Yuanyuan Zhao, Wenfeng Fang, Yunpeng Yang, Yan Huang, Li Zhang, Hongyun Zhao

Yuxiang Ma, Huaqiang Zhou, Fan Luo... et al. Precision Oncology
2024 Immune mapping of human tuberculosis and sarcoidosis lung granulomas

Phenoplex, Publicly Sharable

Tuberculosis (TB) and sarcoidosis are both granulomatous diseases. Here, we compared the immunological microenvironments of granulomas from TB and sarcoidosis patients using in situ sequencing (ISS) transcriptomic analysis and multiplexed immunolabeling of tissue sections. TB lesions consisted of large necrotic and cellular granulomas, whereas “multifocal” granulomas with macrophages or epitheloid cell core and a T-cell rim were observed in sarcoidosis samples. The necrotic core in TB lesions was surrounded by macrophages and encircled by a dense T-cell layer. Within the T-cell layer, compact B-cell aggregates were observed in most TB samples. These B-cell clusters were vascularized and could contain defined B-/T-cell and macrophage-rich areas. The ISS of 40–60 immune transcripts revealed the enriched expression of transcripts involved in homing or migration to lymph nodes, which formed networks at single-cell distances in lymphoid areas of the TB lesions. Instead, myeloid-annotated regions were enriched in CD68 , CD14 , ITGAM , ITGAX , and CD4 mRNA. CXCL8 and IL1B mRNA were observed in granulocytic areas in which M. tuberculosis was also detected. In line with ISS data indicating tertiary lymphoid structures, immune labeling of TB sections expressed markers of high endothelial venules, follicular dendritic cells, follicular helper T cells, and lymph-node homing receptors on T cells. Neither ISS nor immunolabeling showed evidence of tertiary lymphoid aggregates in sarcoidosis samples. Together, our finding suggests that despite their heterogeneity, the formation of tertiary immune structures is a common feature in granulomas from TB patients.

B Carow, V Muliadi, K Skålén, C Yokota, G Kathamuthu, T Setiabudiawan, C Lange, K Scheu, K Gaede, T Goldmann, A Pandita, K Masood, S Pervez, J Grunewald, Z Hasan, M Levin, M Rottenberg

B Carow, V Muliadi, K Skålén... et al. Frontiers in Immunology
2024 Global, neuronal or β cell-specific deletion of inceptor improves glucose homeostasis in male mice with diet-induced obesity

Phenoplex, Publicly Sharable

Insulin resistance is an early complication of diet-induced obesity (DIO)1, potentially leading to hyperglycaemia and hyperinsulinaemia, accompanied by adaptive β cell hypertrophy and development of type 2 diabetes2. Insulin not only signals via the insulin receptor (INSR), but also promotes β cell survival, growth and function via the insulin-like growth factor 1 receptor (IGF1R)3–6. We recently identified the insulin inhibitory receptor (inceptor) as the key mediator of IGF1R and INSR desensitization7. But, although β cell-specific loss of inceptor improves β cell function in lean mice7, it warrants clarification whether inceptor signal inhibition also improves glycaemia under conditions of obesity. We assessed the glucometabolic effects of targeted inceptor deletion in either the brain or the pancreatic β cells under conditions of DIO in male mice. In the present study, we show that global and neuronal deletion of inceptor, as well as its adult-onset deletion in the β cells, improves glucose homeostasis by enhancing β cell health and function. Moreover, we demonstrate that inceptor-mediated improvement in glucose control does not depend on inceptor function in agouti-related protein-expressing or pro-opiomelanocortin neurons. Our data demonstrate that inceptor inhibition improves glucose homeostasis in mice with DIO, hence corroborating that inceptor is a crucial regulator of INSR and IGF1R signalling. In male mice with diet-induced obesity, deletion of insulin inhibitory receptor (inceptor) in the whole body, in the brain and in pancreatic β cells improves glucose homeostasis, underlining a role of inceptor in regulating glucose homeostasis in the brain and pancreas.

Gerald Grandl, Gustav Collden, Jin Feng, Sreya Bhattacharya, Felix Klingelhuber, Leopold Schomann, Sara Bilekova, Ansarullah, Weiwei Xu, Fataneh Fathi Far, Monica Tost, Tim Gruber, Aimée Bastidas-Ponce, Qian Zhang, Aaron Novikoff, Arkadiusz Liskiewicz, Daniela Liskiewicz, Cristina Garcia-Caceres, Annette Feuchtinger, Matthias H. Tschöp, Natalie Krahmer, Heiko Lickert, Timo D. Müller

Gerald Grandl, Gustav Collden, Jin Feng... et al. Nature Metabolism
2024 C3d-Targeted factor H inhibits tissue complement in disease models and reduces glomerular injury without affecting circulating complement

Phenoplex, Publicly Sharable

Complement-mediated diseases can be treated using systemic inhibitors. However, complement components are abundant in circulation, affecting systemic inhibitors’ exposure and efficacy. Furthermore, because of complement's essential role in immunity, systemic treatments raise infection risk in patients. To address these challenges, we developed antibody fusion proteins combining the alternative-pathway complement inhibitor factor H (fH1–5) with an anti-C3d monoclonal antibody (C3d-mAb-2fH). Because C3d is deposited at sites of complement activity, this molecule localizes to tissue complement while minimizing circulating complement engagement. These fusion proteins bind to deposited complement in diseased human skin sections and localize to activated complement in a primate skin injury model. We further explored the pharmacology of C3d-mAb-2fH proteins in rodent models with robust tissue complement activation. Doses of C3d-mAb-2fH >1 mg/kg achieved >75% tissue complement inhibition in mouse and rat injury models while avoiding circulating complement blockade. Glomerular-specific complement inhibition reduced proteinuria and preserved podocyte foot-process architecture in rat membranous nephropathy, indicating disease-modifying efficacy. These data indicate that targeting local tissue complement results in durable and efficacious complement blockade in skin and kidney while avoiding systemic inhibition, suggesting broad applicability of this approach in treating a range of complement-mediated diseases.

Fei Liu, Sarah T. Ryan, Kelly C. Fahnoe, Jennifer G. Morgan, Anne E. Cheung, Michael J. Storek, Alejandro Best, Hui A. Chen, Monica Locatelli, Shuyun Xu, Enno Schmidt, Leon F. Schmidt-Jiménez, Katja Bieber, Joel M. Henderson, Christine G. Lian, Admar Verschoor, Ralf J. Ludwig, Ariela Benigni, Giuseppe Remuzzi, David J. Salant, Susan L. Kalled, Joshua M. Thurman, V. Michael Holers, Shelia M. Violette, Stefan Wawersik

Fei Liu, Sarah T. Ryan, Kelly C. Fahnoe... et al. Molecular Therapy
2024 B cells orchestrate tolerance to the neuromyelitis optica autoantigen AQP4

Phenoplex, Publicly Sharable

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4. The immune system is tolerized against the neuromyelitis optica autoantigen AQP4 by thymic B cells, which present their endogenous AQP4 to AQP4-reactive thymocytes.

A Afzali, L Nirschl, C Sie, M Pfaller, O Ulianov, T Hassler, C Federle, E Petrozziello, S Kalluri, Hsin Hsiang Chen, Sofia Tyystjärvi, Andreas Muschaweckh, Katja Lammens, Claire Delbridge, Andreas Büttner, Katja Steiger, Gönül Seyhan, Ole Petter Ottersen, Rupert Öllinger, Roland Rad, Sebastian Jarosch, Adrian Straub, Anton Mühlbauer, Simon Grassmann, Bernhard Hemmer, Jan P. Böttcher, Ingrid Wagner, Mario Kreutzfeldt, Doron Merkler, Irene Bonafonte Pardàs, Marc Schmidt Supprian, Veit R. Buchholz, Sylvia Heink, Dirk H. Busch, Ludger Klein, Thomas Korn

A Afzali, L Nirschl, C Sie... et al. Nature
2024 Molecular, Metabolic, and Subcellular Mapping of the Tumor Immune Microenvironment via 3D Targeted and Non-Targeted Multiplex Multi-Omics Analyses

COMET, Lunaphore, Phenoplex, Publicly Sharable, Tissuealign

Simple Summary A tumor tissue is composed of not only cancer cells but also other cell types and microorganisms that communicate among themselves in a three-dimensional (3D) space to support cancer cell growth. Using two different gynecologic tumor tissue samples, we integrated multiple new techniques using a suite of newly developed analytical methods to simultaneously identify expression of genes, metabolites, and proteins in single tissue ‘voxels’. These tissue voxels contain cells, genes from those cells and microorganisms, and the stromal context of proteins (collagen), glycans, metabolites, and peptides, all identified in the 3D space within a tumor tissue. We have successfully demonstrated different arrays of analytes expressed by cancer cells and their neighboring cells in different regions of the tumor tissue. Understanding how cancer cells communicate with other cell types in the 3D space of the tumor tissue will allow for the identification of new therapeutic targets for the treatment of these diseases. Abstract Most platforms used for the molecular reconstruction of the tumor–immune microenvironment (TIME) of a solid tumor fail to explore the spatial context of the three-dimensional (3D) space of the tumor at a single-cell resolution, and thus lack information about cell–cell or cell–extracellular matrix (ECM) interactions. To address this issue, a pipeline which integrated multiplex spatially resolved multi-omics platforms was developed to identify crosstalk signaling networks among various cell types and the ECM in the 3D TIME of two FFPE (formalin-fixed paraffin embedded) gynecologic tumor samples. These platforms include non-targeted mass spectrometry imaging (glycans, metabolites, and peptides) and Stereo-seq (spatial transcriptomics) and targeted seqIF (IHC proteomics). The spatially resolved imaging data in a two- and three-dimensional space demonstrated various cellular neighborhoods in both samples. The collection of spatially resolved analytes in a voxel (3D pixel) across serial sections of the tissue was also demonstrated. Data collected from this analytical pipeline were used to construct spatial 3D maps with single-cell resolution, which revealed cell identity, activation, and energized status. These maps will provide not only insights into the molecular basis of spatial cell heterogeneity in the TIME, but also novel predictive biomarkers and therapeutic targets, which can improve patient survival rates.

Sammy Ferri-Borgogno, Jared K. Burks, Erin H. Seeley, Trevor D. McKee, Danielle L. Stolley, Akshay V. Basi, Javier A. Gomez, Basant T. Gamal, Shamini Ayyadhury, Barrett C. Lawson, Melinda S. Yates, Michael J. Birrer, Karen H. Lu, Samuel C. Mok

Sammy Ferri-Borgogno, Jared K. Burks, Erin H. Seeley... et al. Cancers
2024 Disease-Associated Neurotoxic Astrocyte Markers in Alzheimer Disease Based on Integrative Single-Nucleus RNA Sequencing

Phenoplex, Publicly Sharable

Alzheimer disease (AD) is an irreversible neurodegenerative disease, and astrocytes play a key role in its onset and progression. The aim of this study is to analyze the characteristics of neurotoxic astrocytes and identify novel molecular targets for slowing down the progression of AD. Single-nucleus RNA sequencing (snRNA-seq) data were analyzed from various AD cohorts comprising about 210,654 cells from 53 brain tissue. By integrating snRNA-seq data with bulk RNA-seq data, crucial astrocyte types and genes associated with the prognosis of patients with AD were identified. The expression of neurotoxic astrocyte markers was validated using 5 × FAD and wild-type (WT) mouse models, combined with experiments such as western blot, quantitative real-time PCR (qRT-PCR), and immunofluorescence. A group of neurotoxic astrocytes closely related to AD pathology was identified, which were involved in inflammatory responses and pathways related to neuron survival. Combining snRNA and bulk tissue data, ZEP36L, AEBP1, WWTR1, PHYHD1, DST and RASL12 were identified as toxic astrocyte markers closely related to disease severity, significantly elevated in brain tissues of 5 × FAD mice and primary astrocytes treated with Aβ. Among them, WWTR1 was significantly increased in astrocytes of 5 × FAD mice, driving astrocyte inflammatory responses, and has been identified as an important marker of neurotoxic astrocytes. snRNA-seq analysis reveals the biological functions of neurotoxic astrocytes. Six genes related to AD pathology were identified and validated, among which WWTR1 may be a novel marker of neurotoxic astrocytes.

Wuhan Yu, Yin Li, Fuxin Zhong, Zhangjing Deng, Jiani Wu, Weihua Yu, Yang Lü

Wuhan Yu, Yin Li, Fuxin Zhong... et al. Cellular and Molecular Neurobiology
2024 UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment

Phenoplex, Publicly Sharable

The complexity of the tumor microenvironment (TME) is a crucial factor in lung adenocarcinoma (LUAD) progression. To gain deeper insights into molecular mechanisms of LUAD, we perform an integrative single-cell RNA sequencing (scRNA-seq) data analysis of 377,574 cells from 117 LUAD patient samples. By linking scRNA-seq data with bulk gene expression data, we identify a cluster of prognostic-related UPP1high tumor cells. These cells, primarily situated at the invasive front of tumors, display a stronger association with the immunosuppressive components in the TME. Our cytokine array analysis reveals that the upregulation of UPP1 in tumor cells leads to the increased release of various immunosuppressive cytokines, with TGF-β1 being particularly prominent. Furthermore, this UPP1 upregulation also elevates the expression of PD-L1 through the PI3K/AKT/mTOR pathway, which contributes to the suppression of CD8 + T cells. Cytometry by time-of-flight (CyTOF) analysis provides additional evidence of the role of UPP1 in shaping the immunosuppressive nature of the TME. Using patient-derived organoids (PDOs), we discover that UPP1high tumors exhibit relatively increased sensitivity to Bosutinib and Dasatinib. Collectively, our study highlights the immunosuppressive role of UPP1 in LUAD, and these findings may provide insights into the molecular features of LUAD and facilitate the development of personalized treatment strategies. Characterising the tumour microenvironment features of lung adenocarcinoma (LUAD) remains crucial. Here, the authors perform single cell RNA sequencing data analysis of 117 LUAD samples and functional assays and highlight the immunosuppressive role of UPP1high tumour cells.

Yin Li, Manling Jiang, Ling Aye, Li Luo, Yong Zhang, Fengkai Xu, Yongqi Wei, Dan Peng, Xiang He, Jie Gu, Xiaofang Yu, Guoping Li, Di Ge, Chunlai Lu

Yin Li, Manling Jiang, Ling Aye... et al. Nature Communications
2024 Multiomics profiling of Urothelial Carcinoma in Situ reveals CIS specific gene signature and immune characteristics

Phenoplex, Publicly Sharable

Urothelial carcinoma in situ (CIS) is an aggressive phenotype of non-muscle-invasive bladder cancer. Molecular features unique to CIS compared to high-grade papillary tumors are underexplored. RNA sequencing of CIS, papillary tumors, and normal urothelium showed lower immune marker expression in CIS compared to papillary tumors. We identified a 46-gene expression signature in CIS samples including selectively upregulated known druggable targets MTOR, TYK2, AXIN1, CPT1B, GAK, and PIEZO1 and selectively downregulated BRD2 and NDUFB2. High expression of selected genes was significantly associated with CIS in an independent dataset. Mutation analysis of matched CIS and papillary tumors revealed shared mutations between samples across time points and mutational heterogeneity. CCDC138 was the most frequently mutated gene in CIS. The immunological landscape showed higher levels of PD-1-positive cells in CIS lesions compared to papillary tumors. We identified CIS lesions to have distinct characteristics compared to papillary tumors potentially contributing to the aggressive phenotype.

Meenakshi Anurag, Trine Strandgaard, Sung Han Kim, Yongchao Dou, Eva Comperat, Hikmat Al-Ahmadie, Brant A. Inman, Ann Taber, Iver Nordentoft, Jørgen Bjerggaard Jensen, Lars Dyrskjøt, Seth P. Lerner

Meenakshi Anurag, Trine Strandgaard, Sung Han Kim... et al. iScience
2024 Dose-dependent reduction of somatic expansions but not Htt aggregates by di-valent siRNA-mediated silencing of MSH3 in HdhQ111 mice

Phenoplex, Publicly Sharable

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the HTT gene. In addition to germline CAG expansions, somatic repeat expansions in neurons also contribute to HD pathogenesis. The DNA mismatch repair gene, MSH3, identified as a genetic modifier of HD onset and progression, promotes somatic CAG expansions, and thus presents a potential therapeutic target. However, what extent of MSH3 protein reduction is needed to attenuate somatic CAG expansions and elicit therapeutic benefits in HD disease models is less clear. In our study, we employed potent di-siRNAs to silence mouse Msh3 mRNA expression in a dose-dependent manner in HdhQ111/+ mice and correlated somatic Htt CAG instability with MSH3 protein levels from simultaneously isolated DNA and protein after siRNA treatment. Our results reveal a linear correlation with a proportionality constant of ~ 1 between the prevention of somatic Htt CAG expansions and MSH3 protein expression in vivo, supporting MSH3 as a rate-limiting step in somatic expansions. Intriguingly, despite a 75% reduction in MSH3 protein levels, striatal nuclear HTT aggregates remained unchanged. We also note that evidence for nuclear Msh3 mRNA that is inaccessible to RNA interference was found, and that MSH6 protein in the striatum was upregulated following MSH3 knockdown in HdhQ111/+ mice. These results provide important clues to address critical questions for the development of therapeutic molecules targeting MSH3 as a potential therapeutic target for HD.

Rachelle Driscoll, Lucas Hampton, Neeta A. Abraham, J. Douglas Larigan, Nadine F. Joseph, Juan C. Hernandez-Vega, Sarah Geisler, Fu-Chia Yang, Matthew Deninger, David T. Tran, Natasha Khatri, Bruno M. D. C. Godinho, Garth A. Kinberger, Daniel R. Montagna, Warren D. Hirst, Catherine L. Guardado, Kelly E. Glajch, H. Moore Arnold, Corrie L. Gallant-Behm, Andreas Weihofen

Rachelle Driscoll, Lucas Hampton, Neeta A. Abraham... et al. Scientific Reports
2024 Integrative Analyses of Pyrimidine Salvage Pathway-Related Genes Revealing the Associations Between UPP1 and Tumor Microenvironment

Phenoplex, Publicly Sharable

Background: The pyrimidine salvage pathway plays a critical role in tumor progression and patient outcomes. The roles of pyrimidine salvage pathway-related genes (PSPGs) in cancer, however, are not fully understood. This study aims to depict the characteristics of PSPGs across various cancers. Methods: An integrative pan-cancer analysis of six PSPGs (CDA, UCK1, UCK2, UCKL1, UPP1, and UPP2) was conducted using TCGA data, single-cell RNA sequencing datasets, and patient samples. Single-cell transcriptome analysis and RT-qPCR were used to validate the relation between UPP1 and cytokines. Flow cytometry was performed to validate the role of UPP1 in immune checkpoint regulation. The correlation between UPP1 and tumor associated neutrophils (TAN) were investigated and validated by single-cell transcriptome analysis and tissue microarrays (TMAs). Results: PSPGs showed low mutation rates but significant copy number variations, particularly amplifications in UCKL1, UPP1, and UCK2 across various cancers. DNA methylation patterns varied, with notable negative correlations between methylation and gene expression in UPP1. PSPGs were broadly up-regulated in multiple cancers, with correlations to clinical staging and prognosis. Proteomic data further confirmed these findings. Functional analysis revealed PSPGs’ associations with tumor proliferation, metastasis, and various signaling pathways. UPP1 showed strong correlations with the tumor microenvironment (TME), particularly with cytokines, immune checkpoints, and various immune cells. Single-cell transcriptome analysis confirmed these associations, highlighting UPP1’s influence on cytokine expression and immune checkpoint regulation. In esophageal squamous cell carcinoma (ESCC), UPP1-high tumor cells were significantly associated with immunosuppressive cells in the TME. Spatial analysis using TMAs revealed that UPP1+ tumor cells were predominantly located at the invasive margin and closely associated with neutrophils, correlating with poorer patient prognosis. Conclusion: Our study depicted the multi-dimensional view of PSPGs in cancer, with a particular focus on UPP1’s role in the TME. Targeting UPP1 holds promise as a potential strategy for cancer therapy.

Yin Li, Manling Jiang, Yongqi Wei, Xiang He, Guoping Li, Chunlai Lu, Di Ge

Yin Li, Manling Jiang, Yongqi Wei... et al. Journal of Inflammation Research
2024 Heterogeneity in intrahepatic macrophage populations and druggable target expression in patients with steatotic liver disease-related fibrosis

Akoya, MASH, NASH, Phenoimager, Phenoplex, Publicly Sharable, nice

Clinical trials for reducing fibrosis in steatotic liver disease (SLD) have targeted macrophages with variable results. We evaluated intrahepatic macrophages in patients with SLD to determine if activity scores or fibrosis stages influenced phenotypes and expression of druggable targets, such as CCR2 and galectin-3. Liver biopsies from controls or patients with minimal or advanced fibrosis were subject to gene expression analysis using nCounter to determine differences in macrophage-related genes (n = 30). To investigate variability among individual patients, we compared additional biopsies by staining them with multiplex antibody panels (CD68/CD14/CD16/CD163/Mac387 or CD163/CCR2/galectin-3/Mac387) followed by spectral imaging and spatial analysis. Algorithms that utilize deep learning/artificial intelligence were applied to create cell cluster plots, phenotype profile maps, and to determine levels of protein expression (n = 34). Several genes known to be pro-fibrotic (e.g. CD206, TREM2, CD163, and ARG1) showed either no significant differences or significantly decreased with advanced fibrosis. Although marked variability in gene expression was observed in individual patients with cirrhosis, several druggable targets and their ligands (e.g. CCR2, CCR5, CCL2, CCL5, and LGALS3) were significantly increased when compared to patients with minimal fibrosis. Antibody panels identified populations that were significantly increased (e.g. Mac387+), decreased (e.g. CD14+), or enriched (e.g. interactions of Mac387) in patients that had progression of disease or advanced fibrosis. Despite heterogeneity in patients with SLD, several macrophage phenotypes and druggable targets showed a positive correlation with increasing NAFLD activity scores and fibrosis stages.Patients with SLD have markedly varied macrophage- and druggable target-related gene and protein expression in their livers. Several patients had relatively high expression, while others were like controls. Overall, patients with more advanced disease had significantly higher expression of CCR2 and galectin-3 at both the gene and protein levels. Appreciating individual differences within the hepatic microenvironment of patients with SLD may be paramount to developing effective treatments. These results may explain why such a small percentage of patients have responded to macrophage-targeting therapies and provide additional support for precision medicine-guided treatment of chronic liver diseases. Keywords: Cardiometabolic risk factors, Chemokines, Infiltrating monocytes, Inflammation, NanoString nCounter, Multispectral imaging, MASLD, Visiopharm

Omar A. Saldarriaga, Timothy G. Wanninger, Esteban Arroyave, Joseph Gosnell, Santhoshi Krishnan, Morgan Oneka, Daniel Bao, Daniel E. Millian, Michael L. Kueht, Akshata Moghe, Jingjing Jiao, Jessica I. Sanchez, Heidi Spratt, Laura Beretta, Arvind Rao, Jared K. Burks, Heather L. Stevenson

Omar A. Saldarriaga, Timothy G. Wanninger, Esteban Arroyave... et al. JHEP Reports
Success
Your message has been successfully sent!