
Human scoring versus AI scoring. In order to 
test whether using the membrane stain as an 
outline of the cell for machine learning improves 
the counting of the number of RNA spots per 
cell, we compared four human spot counters to 
each of the AI-based algorithms. The humans 
were asked to find every cell that was not outside 
the boundary (the dotted square in the images), 
to place a number on that cell, and then to count 
the number of nuclei in that cell and the number 
of spots. To keep the exercise to only be about 
what is and what is not a cell, each person used 
the same spots as the basis for spot counting.

The results for Jim, Guy, Randy, and Aneesh can 
be seen in the cell number overlays on each 
image and in the tables beside each image. The 
summary statistics can be seen in the table 
below.

Although it is difficult to make a rigorous 
comparison between human reads, the humans 
were generally similar to each other, depending 
on how strict they were with edge cell counting. 
They each found cells that had 0, 1, and 2 nuclei, 
and for those cells that are obviously the same 
cell (despite the differing numbering schemes), 
counted a similar number of spots. What was 
different was the basic “hematoxylin only” 
counting method. That clearly misses many cells, 
splits multinucleated cells inappropriately, and 
clearly counts spots from outside a given cell’s 
boundaries (see lower left image). So, the 
hematoxylin-only method undercounts cells and 
overcounts the number of spots per cell.
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Introduction
RNA-ISH has rapidly achieved prominence within translational research, 
long holding promise as being critical for novel  diagnostic and 
therapeutic applications where other biomarker types cannot be used. 
However, there remain key barriers to greater clinical adoption for RNA-
ISH, including validation of observed ”dots” and accurate identification 
of RNA within specific cells, particularly in cytoplasmic regions.  These 
significant quantification challenges exist due to a lack of a robust assay 
validation methodology and difficulties in determining cell boundaries. 
Here we propose a novel collaboration to address both long-standing 
issues using a reagent-encoded approach (HCR™ Pro by MI) as well as 
downstream AI-enabled analysis software (Phenoplex by Visiopharm) to 
offer a proof-of-concept demonstration of end-to-end assay validation 
and quantification with high fidelity.

Approach
To validate this methodology, we divided the study into two discrete 
components: 

1. Performance characterization of the HCR™ Pro RNA-ISH assay 
through Dual Channel™ Validation (DCV)

2. Quantification of observed RNA “dots” with orthogonal 
methodologies (human-interpreted and AI-enabled).

Methods
MI’s HCR™ Pro RNA-ISH assays feature several key advancements, including: (1) truly protease-free sample pre-treatment for 
high-fidelity tissue preservation and plug-and-play compatibility with IHC/IF, and (2) incorporation of HCR™ HiFi Probes with 
DCV that characterizes the specificity and sensitivity of any given assay in any given tissue of interest.  DCV is a generalizable 
assay validation tool that calls upon the property of linear amplification that has been validated in prior literature [1]. Using 
DCV, individual HCR™ HiFi Probes can be assigned a score that encodes its overall performance within an HCR™ Pro assay.

Additionally, compared to conventional RNA-ISH products that rely upon harsh protease digestion to allow for the diffusion of 
bulky detection reagents in situ, HCR™ Pro offers a distinct advantage through its use of small, background-suppressed DNA-
encoded reagents that enable a truly protease-free sample preparation workflow, which safeguards tissue and epitope 
integrity. This allows for co-detection with virtually any protein marker on any given tissue section, maximizing the utility of 
valuable patient-derived samples and enabling the simultaneous use of IHC-based membrane stains for cell segmentation.

The integration of Visiopharm’s Phenoplex software, a powerful deep-learning solution powered by AI, along with co-
detection of cellular membrane markers, further enhances the identification of cells and their boundaries. User-drawn 
annotations are used to train an algorithm for the precise recognition of cell boundaries based on membrane stains. This 
significantly improves cell boundary detection and therefore RNA spot localization, paving the way for more accurate spot 
counts and a deeper understanding of RNA expression within the complex tumor microenvironment. 

Here we present findings using orthogonal methods of dot counting and assignment: (1) human-interpreted scoring (N=4), 
(2) AI-enabled scoring based upon IHC membrane stain, and (3) software-enabled scoring based upon nuclear expansion 
from a standard hematoxylin stain.

Results: AI Counting

Conclusions
Based upon these initial findings, we propose two primary conclusions: 

1. A membrane stain-based approach is superior to a nuclear expansion-
based approach

2. Use of a membrane stain in assisting a human quantifier is superior to 
relying solely on hematoxylin for cell identification

We suggest that RNA-ISH quantification can be generally improved by the 
simultaneous use of an IHC-based membrane stain whenever possible. MI 
offers a validated library of HCR™ Membrane Stains that can be used across 
many common tissue types and species. 

These enabling features lay the groundwork for robustly characterized, clinical-
grade RNA-ISH assay performance, as well as high-fidelity assignment of RNA 
dots to correct cell compartments using cell segmentation via a physical 
biomarker. This facilitates the translation of high-value RNA-ISH assays from 
research to clinical settings, ultimately enabling clinicians to make reliable, 
clinically meaningful decisions based on RNA quantification, regardless of 
analysis approach. 

Cell # Nuclei Spots
1 0 1
2 0 4
3 0 3
4 0 0
5 2 7
6 0 2
7 1 2
8 0 1
9 0 0

10 0 1
11 0 4
12 1 5
13 1 2
14 1 7
15 0 2
16 1 10
17 0 1
18 0 0
19 0 2
20 1 1
21 1 9
22 1 5
23 0 0
24 1 2
25 1 8
26 1 2
27 0 1
28 1 3
29 0 0
30 0 4
31 0 4
32 1 15
33 1 3
34 1 4
35 1 10
36 0 1
37 1 1
38 0 0
39 0 3
40 1 5
41 1 4
42 1 7
43 0 2
44 0 0
45 0 1
46 0 1
47 1 8
48 0 0
49 0 2
50 1 9
51 1 3
52 1 7
53 1 4

Person # Cells Average # nuclei STD DEV Average # spots STD DEV

Jim 32 0.75 0.57 4.69 3.04
Guy 50 0.46 0.50 3.5 3.35

Randy 42 0.71 0.60 4.24 3.28
Aneesh 45 0.53 0.66 3.31 3.29

Membrane-aware 53 0.51 0.54 3.45 3.27
Hematoxylin + 

Expansion
31 1 0 5.87 2.81
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18 1 8
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25 1 13
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30 1 8
31 1 4
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Hematoxylin + Expansion

Hematoxylin-only. Top row. This method uses the 
hematoxylin counterstain as a basis to find nuclei, and 
then expands the nuclear region to create a 
cytoplasmic area around that, which is by far the most 
common cell segmentation method. The algorithm 
used is an AI / Deep Learning based method which was 
trained on hundreds of thousands of nuclei across a 
range of H&E and IHC images (and comes standard in 
Oncotopix Discovery). The left image shows a small 
area of the whole slide. The next image shows the 
nuclei that were found using the AI algorithm. The next 
images shows the expanded cytoplasmic area around 
each nucleus. The nucleus and cytoplasm together 
define what is used as a cell in this analysis. The final 
image shows the cell overlaid with the spots that were 
found using a separate AI-based algorithm.

Membrane-aware. Middle row. This algorithm used 
user-drawn annotations of cells to train a new AI 
algorithm that detects cell boundaries based on the 
membrane stain. This new algorithm was trained on 
one sample and then applied to all samples with 
excellent success. The nucleus was then found using 
the same AI algorithm as above, just to be able to 
determine the number of nuclei in each cell (0, 1, or 2). 
Spot counting per cell was done using the same spots 
as all other counting methods (human and machine).

Nuclear status of membrane-aware cells. Bottom 
row. Further visualization of which cells found using the 
membrane-aware algorithm contained nuclei (light 
green) and which did not (dark green). 

Image Nuclear ExpansionNuclei With Dots
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Cells with Nuclei Cells w/o Nuclei With DotsImage

Dual Channel™ Validation of the Polr2a HCR™ HiFi Probe in FFPE Mouse Duodenum Tissue. 
(A) HCR™ Pro RNA-FISH targeting Polr2a in the 546 channel. (B) HCR™ Pro RNA-FISH targeting Polr2a 
in the 647 channel. 

The analysis reveals a colocalization factor of 85% between the two 
channels, with an intensity correlation coefficient of 0.71. These 
findings validate the Polr2a HCR™ HiFi Probe’s ability to specifically 
bind its target RNA with high sensitivity and specificity, effectively 
detecting genuine RNA transcripts for precise and reliable dot 
counting in quantitative analyses. While this does not validate that 
individual dots are individual transcripts, it does validate that dots can 
be used as proxies for target abundance.

A B

HCR™ Pro RNA-ISH Platform

Whole-slide scoring results. The 
membrane-aware algorithm was applied 
to whole-slide images. Upper image 
shows the entire sample. First, a tissue 
segmentation was performed on the 
whole-slide image. Pancreatic tissue is 
shown in green and everything else 
(blank slide, vessels, junk, etc) is shown in 
white (middle image).

The number of dots per cell are show in 
the histogram (left). All cells are counted, 
regardless of number of nuclei (0, 1, 2).  
The largest population are cells with just 
one spot. 
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Visualizing cells with different numbers of spots. A tSNE plot was 
created using all cells from the whole-slide image analysis. That tSNE plot 
was then split into those cells who contained a nucleus (or nuclei, suplot at 
right) and those cells which did not contain any nucleus (left subplot). Cells 
with different number of spots appear in the same locations in the tSNE – 
and one can see that by overlapping the two subplots, cells with the same 
number of spots appear in the same place in the joint tSNE.

By selecting those cells which have no nucleus and which have 6 spots per 
cell, one can see in the thumbnail image gallery (right) how each of those 
cells looks. These are all cells that would have been missed by a “nucleus 
only” cell segmentation method. This use of tSNE plots as a means by which 
one can select cells to view in a thumbnail gallery is extremely useful, as is 
the ‘splitting’ of the tSNE plot into sub-tSNE plots.

Results: Manual Counting Results: Data Exploration
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